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Summary

The communication via a shared medium, like the Internet, is inherently insecure: anyone
may access en route messages and could potentially eavesdrop or even manipulate the on-
going communication. Security protocols are distributed programs specifically designed to
achieve secure communication over such media, typically exchanging messages built using
cryptographic operations (e.g. message encryption).

Security protocols are difficult to design correctly, hence their analysis is critical. A par-
ticularly successful model to analyze security protocols is the Dolev Yao model, in which
the attacker is assumed to have complete control over the network. Also, the model as-
sumes ideal cryptography, where cryptographic operations are assumed to be perfect. The
Dolev Yao model is attractive because it can be easily formalized using languages and tools
based on formal methods. Moreover, the model has an appropriate level of abstraction, as
many attacks are independent of the underlying details of the cryptographic operations and
are based only on combinations of message exchanges plus knowledge gathered by the at-
tacker during the execution.

In this thesis, we present five significant, orthogonal extensions to the Dolev Yao model.
Each extension considers a more realistic setting, closer to the real world, thus providing a
stronger security guarantee. We provide examples both from the literature and from industrial
case studies to show the practical applicability of each extension. The extensions are:

1. We propose an efficient constraint solving procedure, which improves the work of
Millen and Shmatikov. We then introduce a property language based on linear temporal
logic and also present a procedure to search guessing attacks. We use the procedures
both as a teaching tool and to analyze case studies.

2. We develop a model which considers explicitly the passage of time during the execu-
tion of protocols, using timed automata. This allows the study of timing issues like
timeouts and retransmissions in security protocol implementations.

3. We use the Applied Pi Calculus to study guessing attacks under an extended attacker
that can exploit cryptographic relations in eavesdropped messages.

4. We use the language TulaFale to study session based web service protocols, by for-
malizing and providing semantics to two industrial specifications. We build a realistic
model to analyze protocols relying on these specifications.

5. We relate a Dolev Yao model with a realistic computational model. In particular, we
extend the original work of Abadi and Rogaway by considering encryption with com-
posed keys as opposed to atomic keys.
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CHAPTER 1

Introduction

An analysis model is a description specifically created to examine and evaluate an object.
Such description is realized using a formal language and it reflects properties or behaviours
of the original object, while it abstracts from other aspects. In general, the objects of inter-
est may be anything, like complex physical phenomena or computer systems composed of
parallel processes executing together.

In this thesis, the objects we consider are security protocols, also known as cryptographic
protocols. Security protocol principals, such as human beings or computers, execute a secu-
rity protocol by exchanging messages over a medium to achieve some particular goal. We
assume that such a medium (the network) is not private to the principals, but shared between
all other participants. This implies that other participants not taking part in the execution
may still see messages passing by, and potentially play an active role in the communication.
Moreover, participants do not necessarily trust each other, and thus principals executing the
security protocol can not rely on other participants to simply avert their eyes and behave
honestly. A prominent example of such a medium is the Internet.

The correct design of security protocols is a difficult task. Furthermore, ensuring that
the execution of a security protocol indeed achieves the intended goals is critical to provide
confidence on the security of the communication. To establish the correctness of a security
protocol, we first need to define a model in which such protocol is going to be analyzed. Our
models of security protocols follow the structure depicted in Figure 1.1. An analysis model
M (or just model for short) consists of three submodels: a property model, an attacker model,
and an environment model. The environment model encloses the attacker model, while the
property model is separate. In the following, we elaborate on each of these models.

The property model allows the formalization of the goals of the protocol, that is the se-
curity guarantees it is supposed to provide. The security goals are also known as the
protocol requirements or the security properties.

The attacker model describes a participant, called the attacker (or intruder) which does not
necessarily follow the rules of the protocol. Actually, its main interest is in breaking the
protocol, by subverting the intended goal (specified using the property model described
above). In the attacker model, we detail which abilities are available to the attacker,
that is, which operations the attacker is able to perform when trying to accomplish its
goal. The attacker model is also sometimes called the threat model.
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The environment model is a representation of all the surrounding world of the attacker (de-
scribed above in the attacker model). The environment model includes honest princi-
pals which faithfully follow the steps prescribed by the security protocol. By modelling
these principals, the environment model also encodes the security protocol under con-
sideration. Furthermore, the environment model describes the communication mecha-
nisms available between participants. Alternatively, the environment model may also
describe any quality of interest from the real world which may influence the behaviour
(or security assurances) of the protocol. Examples include modelling explicitly the
passage of time, or modelling intrinsic network characteristics such as noise or routing
details.

Analysis Model M
Attacker Environment Property
Model Model Model

Figure 1.1: Analysis model for security protocols

Both the environment model and the property model, as illustrated in Figure 1.1, should
be as general as possible to allow the specification of several protocols and properties, so that
we do not need to modify the model whenever we want to analyze a different protocol or
state a different property. On the other hand, the attacker model need not be so flexible, since
its capabilities are not assumed to change with respect to a particular protocol or goal. Thus
a model M is parametric in both protocol P and its security property ¢, and we can denote
this as M (P, ¢), highlighting the fact that M (P, ¢) is a function of P and ¢. M (P, ¢) is an
instance of M in which P is formalized by the environment model and ¢ is formalized by
the property model.

Given a model M, the problem of security protocol analysis can be seen as a model
checking problem (which shares the same goal as the general problem of software model
checking [48]). More precisely, M should allow to solve the following problem:

Security Decision:  Given a protocol P and a desired security property ¢,
determine whether ¢ holds in M(P, ¢).

Useful analysis models provide feasible strategies to solve the security decision problem.
In general, the choice of the attacker model sets the overall precision of the model. The
stronger an attacker is, the stronger the security results given by the model are, but also the
more difficult it is to solve the security decision problem.

In one extreme, one could consider an attacker model to consist of any, arbitrary computer
program restricted only in its (space and time) resources. Such attacker model is realistic but
provides no general (nor simple) method to establish the security decision of an arbitrary
protocol. A more manageable attacker model is presented within the analysis model we
introduce in the next section.
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1.1 The Dolev Yao Analysis Model

We now describe the so-called Dolev Yao model, denoted by M py. The name comes from
the attacker model proposed by Dolev and Yao [85], following earlier work of Needham and
Schroeder [154]. We describe this model by elaborating on each of its submodels.

Property model The typical property that is considered is secrecy, which states that some
exchanged value between honest participants remains secret to the attacker. This
means that the attacker is not able to reach a state in which it has the secret as part
of its knowledge. Other (more involved) notions of secrecy exist [18, 56]. Another
classical property is entity authentication, which states that principals are correctly
identified by their corresponding communicating parties. A protocol meets the goal
of authentication when an attacker is not able to impersonate some honest principal
successfully. Again, this definition is the simplest, and many others exist [133].

Attacker model The attacker is assumed to have complete network control. Thus, the at-
tacker can intercept, block or redirect any communication action executed by an honest
principal. The attacker can also synthesize new messages from the knowledge it has,
and communicate these messages to honest participants. This synthesis, which is the
ability to create new messages, is precisely defined. For example, the attacker is al-
lowed to pair (i.e. concatenate) and split messages it has in its knowledge, and also
to encrypt and decrypt with known keys. However, if the attacker does not know the
correct decryption key of a given ciphertext (i.e. an encrypted message), then it can
not gain any information from the ciphertext. This assumption is crucial, and it is
known as perfect or ideal encryption. Hence, the attacker is not assumed to be able
to cryptanalyse the underlying encryption scheme, but simply treat it as perfect. As
with encryption, every cryptographic primitive available to the attacker (e.g. hashing
or signature) is similarly idealized, arriving at perfect cryptography.

Environment model This model consists of honest participants that execute the protocol
faithfully, performing each protocol step exactly as prescribed. Protocols are split
into protocol roles, which are sequences of actions that prescribe what each principal
should perform (the roles typically receive self-explanatory names like initiator or
responder). The actions we consider are basic asynchronous communication actions,
i.e. either sending or receiving messages. The exchanged messages between protocol
participants are modelled as terms from a term algebra built up using constructors that
represent different data operators (e.g. message pairing or encryption).

There are two main motivations to adopt the M py model:

e Appropriate level of abstraction. As mentioned in the Summary, many security pro-
tocol attacks are based on combinations of the message exchanges and knowledge
gathered by the attacker during the execution. Moreover, the attacks are completely
independent of the underlying details of the cryptographic primitives employed by the
protocol. This justifies the assumption of perfect cryptography. Thus, analyzing secu-
rity protocols at this level of abstraction is useful since many protocol errors are likely
to be uncovered. As a prominent (and extensively used) example, for the Needham-
Schroeder protocol [154] (shown in the cover of this thesis), Lowe [131] found an
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attack (shown in the back cover of this thesis) seventeen years after its conception.
The attack is based purely on the protocol’s message flows, and can be perpetrated
even if we assume perfect cryptography. Besides Lowe’s attack, many other attacks
have been found over proposed protocols from the literature (see [71, 15] for surveys).

e Ease of manageability with formal methods. Another reason for which Mpy is at-
tractive is that each of its submodels can be described with approaches and languages
available within formal methods.

— The environment model can be seen as a collection of sequential processes run-
ning in parallel. Extensive research within the formal methods community has
been carried out on concurrent languages that provide both modelling and analy-
sis capabilities (e.g. CCS [152] and CSP [111]).

— The attacker model can be seen as another process running in parallel with the
principals from the environment model, controlling the communication between
the principals. The data manipulation abilities of the attacker can be modelled in
many ways with formal methods. For example, an attacker can be a process that
applies term rewriting over the messages it has in its knowledge. Alternatively,
we can think of the attacker as an arbitrary process where the relations between
different data are modelled by equational theories over the assumed term algebra.

— Finally, the property model can also be formalized using well-studied expressive
logics (e.g. linear temporal logic) or using process equivalences in concurrent
languages.

Furthermore, the relative simplicity of the Dolev Yao model allows the development
of security proof strategies that follow a general form regardless of the actual proto-
col under analysis. In fact, the security decision problem stated above turns out to be
decidable [31, 157] when assuming a finite number of participants in the environment
model. Still, participants may communicate arbitrarily long messages, thus possibly
generating an infinite state space. Decidability means that the question of whether
some protocol satisfies a security property can be answered automatically by some
(smart) computer program, without any human assistance (e.g. [134, 149]). In this
context, the efficiency of such a verifier is important in practice, since having decid-
ability in theory alone does not help if the verifier is overly slow. Relaxing the assump-
tion of having a bounded number of participants to allow an unbounded number makes
the problem undecidable [87]. Nevertheless, formal techniques using manual theorem
provers or automatic semi-decision procedures have also been developed successfully
(e.g. [155, 55]).

Due to these reasons, during the last decade a large number of formal approaches to
analyze security protocols have been proposed in the literature. For the sake of brevity, we
do not list these approaches here but refer the interested reader to the survey of Comon and
Shmatikov [73] (and the references therein) for an overview. For a survey focused on property
models we refer the reader to the recent survey by Meadows [143] (there, property models
are called requirement languages). Still, we provide extensive related work and references
for each of our developments in Chapters 2, 3, 4, 5 and 6.
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1.2 Research Question

A model M can be extended to another model M’, where some new quality is taken into
account in M’ which is not addressed in M. In principle, M’ may extend M in any of its
submodels alone (i.e. its attacker, environment or property model), or a combination of the
submodels. In this thesis we consider extensions of the Dolev Yao model M py presented
above to answer the following question:

Research Question: In which useful ways can we extend the Dolev Yao model
M py efficiently and effectively ?

Each extended model M of M py enables us to study protocols under new light, thus
providing further confidence in the protocol security or uncovering additional threats. This
is because M analyzes a different aspect not covered by M py. As we already mentioned,
models can be refined by extending any of the submodels of Figure 1.1, or a combination of
them. The simplest cases involve the extension of one submodel, leaving the other models
untouched. However, more complex changes involve multiple submodel modifications. We
now illustrate several possible extensions, which describe a range of useful developments
that can be built on top of the basic Dolev Yao model. (These are not the actual thesis’
contributions, which are listed below in Section 1.3.)

Extending the environment model alone In Section 1.1, the environment model is described
as consisting of participants executing the protocol, which are asynchronous commu-
nication actions like send and receive. This description is somewhat loose, in the sense
that it does not specify (a) how many principals are running the protocol, nor (b) how
many steps the protocol has. It also does not say anything about (c) the possibility
of principals executing other actions besides just send and receive actions. For (a), we
already hinted that one can choose a bounded number of participants (which makes the
security decision problem decidable) or extend the environment to allow an unbounded
number of participants. For (b), although protocols are typically designed to consist
of a finite, a-priori fixed number of exchanges, nothing prevents us from considering
cases in which the protocol involves an unbounded exchange of messages (thus mod-
elling open-ended sessions). Furthermore, for (c), it is known that some protocols may
need other actions than communication to be implemented properly. For example,
some protocols may require the ability to check particular conditions (e.g. checking
that two values match) before proceeding in their execution. Each of these possible
extensions regards only the environment model, and is independent of the attacker or
property model.

Extending the environment and attacker model Some other extensions to the environment
model also trigger extensions to the attacker model. For example, sometimes assum-
ing that our term algebra used to represent messages is in reality a free algebra (i.e. an
algebra in which terms are only equal to themselves) is unrealistic, since it provides no
relation between messages which represent real-world bit strings known to be related.
One example occurs when we use XOR (exclusive-or) as a term constructor. Here,
we would like to equate terms built with XOR up to commutativity and associativity.
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Furthermore, messages equate to themselves when XOR’ed with the neutral element,
and equate the neutral element when XOR’ed twice. Some protocols are designed
specifically to use such underlying properties (e.g. Bull’s recursive authentication pro-
tocol [64]), and thus to model those protocols our environment model has to support
such term equalities. However, to be realistic, the attacker should also be aware of
such term equalities, and have the ability to exploit them. For a recent survey of al-
gebraic properties used in term algebras for the analysis of security protocols we refer
the reader to the work of Cortier et al. [74].

Other extensions to the environment model include refinements to make the model
more realistic by modelling real-world qualities, e.g. modelling the passage of time
explicitly. This extension provides the facility to model protocols and their partici-
pants in a more detailed fashion, including explicit timing issues like timeouts and
retransmissions. The attacker model may also be endowed with timing capabilities
that help the attacker to deduce facts which are assumed to be kept secret (such attacks
are usually called timing attacks [120]).

Extending the environment and property model Another useful extension to the property
model consists of developing a full language that allows the formulation of sophisti-
cated security properties. This contrasts to using fixed versions of properties, in that
a full language provides more flexibility and fine-grained precision of specification of
the desired security property. Such languages typically build the properties as asser-
tions about the execution trace and the principals’ status at different points of their
execution. Thus, to provide a useful property language we need to provide another
action (besides communication) available to the principals in the environment model,
a so called status assertion action, in which principals state details about their current
execution state. Then the property language can use the status assertions as atomic
predicates to build complex security properties.

Extending the attacker and property model As a last example, suppose we extend the at-
tacker model and let the attacker mount offline dictionary attacks [137] over weak keys
(e.g. passwords chosen by humans). Some protocols are designed specifically to avoid
such attacks [47], by providing no means to an attacker to verify its guesses. Apart
from giving the attacker the possibility to guess keys, we need to extend the property
model adequately to allow to specify the property that expresses the inability of the
attacker to verify its guesses.

Relating Security Models

Besides extending models, another fruitful research area can be found in relating models.
Here, we do not create a new model M’ out of M but take two models M’ and M and
compare them. Typically, informal relations can be expressed in natural language between
two different analysis models that achieve roughly the same goal (e.g. our constraint solving
approach of Chapter 2 is compared to other existing approaches in Section 2.11, Related
Work).

However, in some cases, we can relate two models in a much more formal and rigorous
manner. In fact, it has been shown that it is possible to translate formal security proofs from
one model to another, and vice versa. Within methods based upon the Dolev Yao model
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M py, one example is in the work of Abadi and Blanchet [20] that relates a typed process
calculus and untyped logic programs for secrecy properties. As another example, Bistarelli
et al. [53] also relates a process calculus with a multiset rewriting framework.

An interesting recent trend of relating models has been started by the work of Abadi
and Rogaway [27]. There, the Dolev Yao model is related to a radically different model,
based upon complexity theoretic definitions. Messages are not terms from a term algebra,
but strings of bits, and the security properties are based on predicates which state that the
attacker advantage in breaking the protocol is probabilistically negligible. Active research is
being done in the area to show that security results can be translated between these models.

1.3 Contributions

In this thesis we propose five original orthogonal contributions that build on the Dolev Yao

model M py of the previous section, as shown in Figure 1.2. In the following we elaborate
on each contribution.

-
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Figure 1.2: Extending and relating the Dolev Yao model M py

A Constraint Solving Analysis Model (Chapter 2) Our starting point is the work on con-
straint based analysis of security protocols proposed by Millen and Shmatikov [149].
The model is similar to M py, although richer since it allows encryption with non-
atomic keys, i.e. regular (constructed) terms may be used as encryption keys, some-
thing that was not possible in previous approaches. Non-atomic keys are important
since many real-life protocols use constructed keys, e.g. establish a session key by
computing the hash of two secret nonces (i.e. random numbers used as challenges).
Millen and Shmatikov present a terminating, sound and complete algorithm to solve
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constraint sets derived from protocol executions of a bounded number of participants.
We review briefly the preliminaries to constraint solving in Section 2.2. We then de-
velop several extensions:

1. We present an improved decision procedure which works more efficiently than
Millen and Shmatikov’s in Section 2.3. This improved procedure appears in the
paper [5] which is joint work with S. Etalle.

2. In Section 2.5, we extend the property model and allow a full language to spec-
ify properties. This language, called PS-LTL, is based on linear temporal logic
and it allows great flexibility when specifying security properties. We present an
associated decision algorithm. This section contains novel work done in coop-
eration with A. Saptawijaya and S. Etalle, building on the basic idea of a trace
logic presented in previous work [4], which is joint work with A. Durante and
S. Etalle.

3. In Section 2.6, we refine the environment model by allowing principals to check
equalities between different parts of received messages. As we shall see, merely
having communication actions for principals in the environment model does not
allow the correct specification of a class of protocols. This refinement appears in
the above mentioned paper [5].

4. In Section 2.7, we extend the model to study guessing attacks (also known as
dictionary attacks). Our refined attacker model is allowed to mount offline dic-
tionary attacks, and obtain guesses for weak keys (e.g. passwords chosen by
humans). The property model specifies the property of verifying a guess, thus
representing a successful attack. We present a procedure (that appears in the pa-
per [8], which is joint work with S. Etalle, S. Malladi and J. Alves-Foss) to find
guessing attacks in constraint solving.

5. We apply our analysis technique to several case studies. The essence of the case
studies is described in Section 2.9, while the details can be found in the pa-
pers [11, 12, 10] and in the PhD theses of Chong [69], Law [127] and Lenzini [130].
In [10] (joint work with C.N. Chong, B. Ren, J.M. Doumen, S. Etalle and P. Har-
tel), protocols for license management (used for digital rights management) are
developed and analyzed. In [11] (which is joint work with G. Di Caprio, S. Etalle,
S. Gnesi, G. Lenzini and C. Moiso), authentication of an (industrial) protocol for
telecommunications is analyzed. In [12] (joint work with Y.W. Law, S. Etalle and
P. Hartel), the security of proposed wireless sensor network protocols is studied.
Finally, we report our experience on the use of the analysis technique as a teach-
ing tool to computer scientist undergraduates at the University of Twente.

A Timed Automata Analysis Model (Chapter 3) We propose a model in which the pas-
sage of time is modelled explicitly. We use timed automata to model both the envi-
ronment and the attacker model, and use the UPPAAL [33] model checker to decide
security of simple reachability properties for secrecy and authentication. We illustrate
the technique by studying the Yahalom protocol. We present further issues that appear
when an attacker can use timing as its abilities, by exposing a timing attack over an au-
thentication protocol. On the positive side, we develop a protocol in which principals
use timing to achieve authentication by sending messages at appropriate moments in
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time. This section builds on the work presented in the paper [6], which is joint work
with S. Etalle, P. Hartel and A. Mader.

A Process Algebraic Model for Guessing Attacks (Chapter 4) We revisit guessing attacks
over security protocols (studied already in Section 2.7 under the constraint based
framework). This time we consider a model in which the perfect cryptography assump-
tion is relaxed, and an attacker can distinguish certain relations between messages. For
example, an attacker can detect whether a ciphertext is really an encrypted message
and not just a random value. These relations are modelled as equational theories over
a message term algebra in the Applied Pi Calculus [23]. In this calculus, the attacker
is represented as an arbitrary context, and security against dictionary is stated as an
equivalence between processes. As illustration, we study the EPT and EKE protocol.
This work appears in the paper [3], which is joint work with J. Doumen and S. Etalle.

A Process Algebraic Model for Session-based Web Services (Chapter 5) We consider the
analysis of web service security protocols, building upon earlier work of Bhargavan
et al. [50]. In particular, we use the language TulaFale [52] (a process algebraic lan-
guage supporting XML encoded data) to study session based web service security pro-
tocols. We formalize and provide semantics to two industrial specifications, namely
WS-Trust [117] and WS-SecureConversation [116]. Furthermore, we build a realistic
analysis model that models insider attacks and use it to analyze typical protocols rely-
ing on these specifications. Finally, we apply our models to analyze a concrete protocol
used recently in the Interoperability workshop [166] by several industrial companies
to test their web service implementations. This chapter builds on previous work [1],
which is joint work with K. Bhargavan, C. Fournet and A.D. Gordon.

Relating Analysis Models (Chapter 6) Abadi and Rogaway [27] relate the Dolev Yao model

M py to a computational counterpart model based on complexity theoretic definitions.
In their seminal work, Abadi and Rogaway consider a term algebra in which messages
may be encrypted with atomic keys only. To merge that result with the formal method
based on constraint solving of Chapter 2, we consider a term algebra that allows non-
atomic encryption with constructed (also called composed) keys, and reestablish Abadi
and Rogaway’s result. This work appears in the paper [9], which is joint work with
P. Laud.

1.4 Conclusion and Outlook

In this work we answer the Research Question of Section 1.2 positively, by proposing several
useful extensions to the Dolev Yao model M py of Section 1.1. While some extensions
emphasize efficiency, others provide effective means to model certain security qualities. We
also illustrate a relation between a Dolev Yao model and a computational model.

Typically, the process of protocol specification in a given formalism already uncovers
many potential issues about the protocol, and provides a good understanding of the protocol
behaviour. Thus, the whole process of modelling is an interactive process during which
the protocol is already under analysis. The same applies to modelling the protocols in the
extensions provided in this thesis.
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Our extensions are of course neither definitive nor complete; there is always room for fur-
ther improvement in our proposed methods. In general, we observe historically that formal
models are always behind new developments in cryptography. For example, only recently
the formal approaches considered probabilistic encryption (e.g. [23]) while the original cryp-
tographic development was introduced more than twenty years ago [99]. This lag in time can
be explained partially by the fact that recasting the cryptographic problems into the (formal)
analysis models takes a non trivial amount of time.

Still, the reader may (fairly) ask whether these extensions (and relations) are only coming
from technical improvements, which in such case would imply that the research community
could reach a ‘fix point’” in which the ultimate solution for analyzing security protocols has
been developed.

Our answer is negative: even if we assume that improvements on the analysis techniques
could eventually reach such a ‘fix point’, we argue that new analysis models will always be
needed, mainly because new protocols are developed continuously, arising from the evolution
of communication methods and cryptographic developments:

New environments New protocols are needed to cope with new situations. For example,
Perrig et al. [156] proposed a new protocol called TESLA, to deal with authentication
in a wireless network environment, which is a particularly lossy channel. To be able to
analyze TESLA new methods were required (e.g. [139, 63]), that model the particular
communication details.

New cryptographic primitives New primitives are developed constantly by the cryptographic
community. For example, active research is being done on identity based encryption
(IBE) [58], which means that several security protocols using IBE are going to be
derived from existing ones.

In general, the field of security advances by a process of trial and error: existing security
constructions (e.g. protocols) are continuously reviewed, and replaced by new proposals as
soon as the construction is found to be unsatisfactory (e.g. an attack or a more efficient
construction is found), and the process is repeated henceforth. In this thesis we contribute to
the research community by proposing analysis models that help in the reviewing process of
security protocols, which are constructions particularly difficult to design correctly.



CHAPTER 2

A Constraint-based
Analysis Model

2.1 Introduction

In this chapter we instantiate the general model described in the Introduction (shown in Fig-
ure 1.1) and develop an analysis model based on constraint solving, as illustrated in Fig-
ure 2.1.

In this model, the analysis is performed by first instantiating the environment model with
a particular (finite) set of principals. Then, this instance (the system scenario) is fed to a
constraint solving procedure, whose goal is to find a protocol execution that leads to an
attack. Protocol executions are represented by constraints the attacker has to meet in order
to perform the executions. Thus, reaching a particular protocol execution (which represents
an attack on the protocol under study) is equivalent to solving a set of constraints, hence the
name of the technique.

Millen and Shmatikov proposed an original constraint solving procedure [149], based
upon a sound and complete reduction procedure (see Section 2.2). Building on top of this
work, we propose an analysis procedure in Section 2.3. Our procedure is more efficient
than the procedure of [149] since it considers less protocol executions when searching for an
attack, without losing precision.

As we mentioned, the constraint solving procedure looks for protocol executions that
represent attacks. However, what specifies an attack in a given execution depends on which
security property we are considering, as modelled by the property model. In our model, the
analysis procedure queries a termination condition predicate that decides whether a given
protocol execution represents an attack or not. If the termination condition holds, the pro-
cedure can stop its search and report the protocol execution that represents the attack. Oth-
erwise, the procedure continues searching for an appropriate protocol execution. In this
chapter, we consider three different termination conditions:

1. A simple role termination condition that can be used to check basic secrecy and au-
thentication properties, as detailed in Section 2.2;

2. A more involved termination condition predicate that allows the use of a specialized
temporal language to specify security properties (called PS-LTL), developed in Sec-
tion 2.5; and
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3. A particular termination condition that can be used to test the security against guessing
attacks (developed in Section 2.7).

Constraint Solving Analysis Model
. Property model 1:
Attacker Environment Role termination
Model Model
Efficient Property model 2:
icien
Agents send, PS-LTL

Constraint

Solving receive and Property model 3:
check messages Guessing attacks
Y

Figure 2.1: Analysis Model based on Constraint Solving

&

In Section 2.2 we introduce preliminary concepts needed in the rest of the chapter, pre-
senting the technique of constraint solving as seminally introduced by Millen and Shmatikov.
After presenting the improved verification algorithm in Section 2.3, we introduce negated
constraints in Section 2.4, which are used subsequently in Sections 2.5 and 2.7. In Sec-
tion 2.6, we extend the environment model and allow principals to send, receive and also
check messages. The complete analysis model is presented in Section 2.8. Then, we report
on case studies in Section 2.9 and our experience on using our methods as a teaching tool in
Section 2.10. We discuss related work on Section 2.11 and finally conclude in Section 2.12.

2.2 Preliminaries

In this section we review the terminology we need in the rest of the chapter. We first introduce
our term algebra and intruder deduction rules, then the security protocol model, and finally
the technique of constraint solving for security protocol analysis.

2.2.1 Terms and Rules

Term Algebra Messages are represented as terms in a free algebra 7 generated by the
operators in Table 2.1 (left), from an enumerable set of variables V' (denoted by upper-
case letters A, B, Na, K, ...), and an enumerable set of constants C (denoted by lowercase
a,b,na, k,...), representing the principal identities, nonces and keys. A special constant
e € C is distinguished to denote the intruder’s identity. We have constructors for repre-
senting public keys, pairing, message hashing, symmetric and asymmetric encryption, and
signature. Private keys in asymmetric encryption are not modelled in the term algebra since
we assume that these keys are never part of messages in protocols. This assumption is re-
alistic, as every protocol we consider does not send its private key in messages. Finally, we
sometimes denote the syntactic equality of two terms ¢; and ¢, as t; = to, which holds iff ¢;
is exactly the same term as to.
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Further definitions and terminology For i < j, the integer interval {i,7+ 1,...,j —
1,5} is denoted as [i...j]. The set of ground terms, denoted by 7, is generated like 7
above but only from constants C and excluding V. When ¢t € T, we say that ¢ is ground,
otherwise it is non-ground. The variables of a term ¢ are denoted as var(t).

Substitutions (denoted by o, p,~, .. .) are finite mappings from V to 7. Ground substi-
tutions map V to 7 +; the domain of o is denoted as dom (o). The empty substitution is
denoted as . Given v € V and t € 7T, [*/v] denotes the singleton substitution that maps v to
t. Given aterm t € 7 and a substitution o, to denotes the term resulting from substituting
each occurrence of v € dom(o) in ¢t by o(v). A term t’ is an instance of another term ¢ if
there is a substitution o s.t. ' = to. The same terminology is used for the (later introduced)
events, protocol roles and traces.

ti,t2 = ¢ constant in C {t1,t2} —pair (t1,t2)
v variable in V {(t1,t2)} — first t1
pk(t1) public key {(t1,t2)} —second 2
(t1, tg) pair {t} —hash h(t)
h(t1) hash {t1,t2} —senc {t1}+,
{t1}+, symmetric encryption | {{t1}s5,t2} —sdec t1
{t1}5 asymmetric encryption | {t1,t2} —penc {t1}s;
sigy, (t2)  signature {t1i}ohe)t  —pdec t1
{tl} —sig Sigpk(e) (tl)

Table 2.1: Grammar for terms (left) and DY rules (right)

DY Rules Rules are used to represent the abilities of the intruder. Let A be a set of terms
and ¢ a term, and let £ be a rule label, stating the name of the rule. A rule is denoted by
A —y t. We work with the set of rules given in Table 2.1 (right), where ¢; and to are terms
in 7. As usual, the attacker is allowed to pair and split terms, hash, symmetrically encrypt
terms with any (possibly non-atomic) key and decrypt symmetrically if the key is known
to the attacker. Public-key encryption (penc) is modelled by allowing to encrypt with any
key. However, rule pdec only allows the asymmetric decryption of a term encrypted with
the attacker’s public key. The attacker cannot decrypt any term encrypted with a different
public key than his own, since we assume that private keys are never leaked (as they do not
take part of any message). Moreover, the attacker can only sign terms using his private key,
represented in rule sig (here pk(e) is the public key that is needed to verify the signature).

We now define F(T') (the fake operation), representing the terms the intruder can generate
from the set of ground terms 7"

Definition 2.2.1. Let T be a ground term set, i.e. T C TT. Then, F(T) is defined as
Un>0F"(T), where F™(T') is the set defined inductively as follows:

FT) = T
FYT) = FNT)U{t|A—,tisaDYruleand A C F"~1(T)}

Intuitively, when the attacker knows (e.g. has eavesdropped) a set of messages 7', then
he can compute the set of terms F (7).
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Example 2.2.2. Let T = {e,{na}w,{(k,e)}ne)}. We now show that {k,na} C F(T).
Since e € T = F°(T), applying rule hash we deduce that h(e) € F1(T). Then using rule
sdec, we obtain that (k,e) € F*(T). Using rule first we find that k € F>(T), and finally
using rule sdec again we deduce that na € F*(T).

2.2.2 Protocol Model

Our protocol model is related to the strand-space formalism [162], although we sometimes
use a different terminology, e.g. we call system scenario what in strand spaces is called a
semibundle. In the following, we introduce events, traces, protocol roles, and system scenar-
i0s.

Definition 2.2.3. A communication event is a pair {a : m ¢ b) where a,b are variables or
principal constants, o € {<,>} and m is a term. a is called the active party, and b is the
passive party.

Since we will let the attacker intercept and forge communication messages, the event (a :
m > b) reads as “principal a sends message m with intended destination b”. Symmetrically,
{(a : m < by stands for “principal a receives message m apparently from b”.

Communication events are not the only events we consider in this chapter. Later we use
status events in Section 2.5 and check events in Section 2.6.

Example 2.2.4. The following are examples of communication events:

e (a : (a,na) > B) is a communication event in which principal a sends pair (a,na)
to another principal B. Since B is a variable (rather than a constant), this event
represents any concrete communication event {a : (a,na) > ¢) for any principal c. In
other words, B is still undetermined. (In fact, B can take any term value, and not
Jjust an principal identity, due to the untyped behaviour of the analysis. Still, attacks
in which principal variables (like B above) are instantiated to non principal constants
are unrealistic and will be ignored.)

e (b: (A /Ny) < A) is a communication event in which principal b receives the pair
(A, N4) from another principal A. Similarly, because of the presence of variables A
and N 4, this stands for any concrete event (b : (¢,n) < c) for any principal ¢ and any
term n.

Definition 2.2.5. A protocol role is a finite sequence of events in which all events share the
same active principal.

Given a protocol written in standard ‘A — B : M’ notation (where the intended meaning
is that A sends message M to B), it is straightforward to obtain its parametric protocol roles,
as shown in the next example.

Consider the BAN Concrete Andrew Secure RPC protocol [65] (with the last message 4
stripped out since it is not necessary for security) shown as Protocol 2.1.

First a sends a message with her identity and a fresh nonce n,. Upon receipt, b generates
a short term session key kg, encrypts it along with a’s nonce n, using the long term key
ki, shared previously with a. Finally, a replies with her nonce n, encrypted with the newly
established key k;.
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Message 1. a — b: (a,n,)
Message 2. b — a: {(ng, kst) b,
Message 3. a — b: {n.}x.,

Protocol 2.1: BAN Concrete Andrew Secure RPC protocol (Messages 1-3)

Protocol notation caveat While describing protocols throughout this chapter, like in
Protocol 2.1 above, we denote the principal identities and exchanged elements in lowercase
(to prevent confusion with the variables denoted with uppercase). Those elements are to
be understood as meta variables used to describe the protocol behaviour, and should not to
be understood as constants from our term algebra (e.g. n, in Protocol 2.1 is not the nonce
ng € C, but a generic nonce). In the subsequent chapters, however, protocols are denoted
using standard uppercase letters, as the notation of variables does not clash anymore.

Example 2.2.6. In the following, we name protocol roles such as init, and resp, denoting
an initiator and a responder respectively. The parametric protocol roles of Protocol 2.1 are
then:

init(A, B,Na, K1, Kst) = ((A: (A, Na)>B) (A:{(Na,Kst)}k,, <B)
(A:{Na}k,, > B)
(B:(A,Na)<A) (B :{
(B:{Na}tk., <4)

)
resp(A, BN, K1, Kot) = B:{(Na,Kst)}r, > A)
)

The next step consists of gathering several protocol roles together, which provides a par-
ticular system instance.

Definition 2.2.7. A system scenario is a multiset of protocol roles.

A system scenario determines which sessions are present, and which principals play
which roles.

Example 2.2.8. Consider the following simple system scenario, where init and resp are the
roles defined in Example 2.2.6:

Sc

{init(a, B, na, klt7 Kst)7 I'CSp(CL, b, NA, k’lt, kst)}
= {{{a:(a,nq)>B){a:{(na, Kst) i, <B){a: {na}k..>B)),
((b: (a,Na)<a)(b: {(Na,kst)br,, > a)(b: {Na}tr, <a))}

This scenario is obtained by partially instantiating the roles of Example 2.2.6. The ini-
tiator is played by a, using fresh nonce na and shared key ki, while the responder is b, using
the shared key kj; and the (freshly created) session key k. B denotes the fact that initially a
does not know to which participant she will be talking to, and what session key (K ;) she is
going to use. Similarly, initially the Responder b does not know the nonce N 4 it will receive.

We further require that each protocol role in a system scenario satisfies the origination
assumption: all uninstantiated variables need to occur in a receive event before they occur in
a send event (see [149] for details). This assumption does not result in a loss of generality
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since protocols can be easily specified to satisfy the assumption; the assumption is needed
to show monotonicity, which states that the attacker never forgets messages it knows, and
also prohibits from learning messages it never knew. Monotonicity helps in the proof of
soundness of completeness (Theorem 2.2.15 below)

2.2.3 Security Property Specification

We now show how Millen and Shmatikov [149] in their seminal work encode secrecy and
authentication inside system scenarios. The encoding of these properties is ad-hoc, and
does not follow the modularity advocated in the Introduction. In Section 2.5 we propose a
different, more powerful language to express security properties.

Secrecy Secrecy of some term x can be checked by adding an artificial role
secret(x) = {e:x<e)

to a scenario, and ensuring that there is no corresponding role with event (e : = > e). Hence,
if role secret(x) can finish its execution, then we know that the intruder provided x, and thus
it can generate x, breaking secrecy.

Example 2.2.9. A scenario Sc’ with a secrecy check of kg in Protocol 2.1 is S/ = Sc U
{secret(kst)}, where Scis the scenario defined in Example 2.2.8.

Authentication Checking authentication is done by crafting system scenarios in which
certain principals are missing, while the present ones finish their execution believing the
missing principal is present.

Example 2.2.10. Consider scenario Sc”” = {resp(a,b, Na, kit, kst)} from Example 2.2.6,
of Protocol 2.1. Here, if the responder resp ever finishes it is execution believing it is talking
to principal a, Protocol 2.1 does not provide authentication of a to b, since the intruder could
impersonate a without b noticing.

This way of checking authentication follows the way presented in [149]. Later, Millen
implemented a more refined way of checking authentication [147] in his Prolog implemen-
tation, see Section 2.5.

2.2.4 Constraint Solving

Central to this chapter is the notion of constraint and constraint set, as defined below.

Definition 2.2.11. A constraint is a pair m : K, of a term m and a term set K (standing for
knowledge). A constraint is called simple if m is a variable, i.e. m € V. A constraint set C'S
is a finite set of constraints; C'S' is simple if each constraint in the set is simple.
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From scenarios to interleavings Given a scenario Sc (as in Example 2.2.8 above), we
can obtain interleavings of events. An interleaving v of Sc¢ = {ry,...,r,} is obtained by
concatenating events from r;, ¢ € [1..n]. Formally, v is an interleaving of Sc if v € ||Se¢, for
||Sc defined as: |[Sc = Uq ryese a-(|[(Sc\ {{ar)} U{r}), withs.Sc= {(sr) |r € Sc}.

Example 2.2.12. A possible interleaving v of scenario Sc from Example 2.2.8 is:

v = ({a:(a,na)>B)(b:(a,Na)<a) (b:{(Na,kst)}i, >a)
(a:{(na, Kst)}r, ab){a: {na}k,, > B) (b:{Natp, <a))

Given a scenario Sc, the number of possible interleavings (i.e. the cardinality of ||Sc)
grows exponentially w.r.t. the number of roles in Sc (i.e. the cardinality of Sc). Since
the security analysis searches through possible interleavings which may represent potential
attacks, the optimization of the number of interleavings that need to be considered is an
important task. In Section 2.3 we develop such an optimization.

From interleavings to constraint sets Each interleaving is transformed to a constraint
set, as follows. Each send communication event is added to an accumulating knowledge set,
while each receive communication event is translated to a constraint. Formally, given an
interleaving v and a knowledge set K we let the mapping cs(v, K') be defined as:

es((), K) = 0
es(({x:moyy ), K) = es(vV,KU{m})
ces(({x:mayyv'),K) = {m:K}Ues(V,K)

The initial intruder knowledge set, denoted Ik, is a ground set of terms representing
what the intruder knows before starting the analysis of a specific scenario. This set includes
the intruder identity e, and may include other public or previously known information, like
principal identities or public keys. Given an interleaving v, we calculate its corresponding
constraint set as cs(v, IK).

Example 2.2.13. The constraint set cs(v, 1K) corresponding to interleaving v from Exam-
ple 2.2.12 and initial intruder knowledge IK is:

cs(,IK) = {(a,Na):IKU{(a,na)},
{(navat)}ku KU {(avna)v {(NAvkst)}km}:
}{NA}kst KU {(CLJL(J,), {(NA’ kSt)}klt7 {na}Kst

The generated constraint set omits information regarding the actual sender and intended
receiver and vice versa; this models the fact that an attacker can impersonate the originators
simply if the attacker is able to compose the necessary messages. Still, the recorded informa-
tion regarding senders and receivers is useful to state the security properties of the protocol,
as done in Section 2.5.

The mapping cs(-, IK) never ‘forgets’ IK. More formally, for any v, IK, and m : K €
cs(v, IK),

IK C K @2.1)
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Solving a constraint set A solution of a constraint set is a substitution that makes every
constraint in the set to be solvable. We formalize this notion in the next definition, using the
fake operator F(-) introduced in Definition 2.2.1.

Definition 2.2.14. Let CS = {m; : K; | i € [1...n]} be a constraint set, and let o be a
ground substitution for all the variables in C'S. We say that o is a solution of C'S if for each
i €[l...n], mo € F(K;o). We also say that C'S is solvable if there exists at least one
solution o of C'S. A partial solution ~ of C'S is a substitution s.t. dom(v) C var(CS), and
C'S~ is solvable.

Let C'S be a simple constraint set (see Definition 2.2.11) s.t. each constraint X : Tx €
C'S satisfies that T'x includes the initial intruder knowledge IK (recall that /K is ground),
i.e. IK C Tx. Using the assumption that e € 1K, we now show that C'S is solvable. Let
o be the substitution that assigns e to each variable X € V. Then o is a solution of each
constraint X : Tx € CS,since Xo =e € IK =Ko CTxo C F(Txo).

We anticipate that every simple constraint set considered in this chapter is derived from
translation cs(+,-) from interleavings to constraint sets, thus including 7K by (2.1). This
implies that simple constraint sets are always solvable.

Millen and Shmatikov’s reduction algorithm (called P in the following) [149] reduces
a constraint set C'S to (a possibly empty set of) pairs of simple constraint sets C'S” and
substitutions . We do not explicitly define P here but rather use it as a black box (since our
extensions do not concern its details), relying on P’s properties:

Theorem 2.2.15 ([149]"). (a) P always terminates. (b) Soundness: If P applied to CS
outputs (CS’,), then ~y is a partial solution of C'S, and every solution of CS’ is also a
solution of C'S~. (c) Completeness: If C'S is solvable with solution o, then applying P to
C'S returns some (CS’, ) such that, for some solution o' of CS’, 0 = ~o'.

Completeness is the most difficult to achieve in the above result, due to the existence of
non-atomic keys for symmetric encryption. Millen and Shmatikov [149] use an extra de-
duction rule and terms called encryption hiding, used to flag symmetric decryptions so that
procedure P does not loop uselessly. We do not include encryption hiding in our description
since it is not required in our improvement, shown below; however, it should be noted that in-
deed encryption hiding is assumed, to be able to guarantee Theorem 2.2.15. This means that
our term algebra provides such a constructor, and a corresponding rule allows the deduction
of such terms.

Example 2.2.16. Let cs(v,IK) be the constraint set of Example 2.2.13. Applying P returns
(0,0), for c(Na) = na and o(Ks) = ks. It is straightforward to check that o is a
solution (see Definition 2.2.14) of cs(v,IK).

We are ready to summarize the protocol analysis procedure as presented in [149]:

Procedure 2.2.17 ([1491%). The analysis of a scenario Sc w.r.t. an initial intruder knowledge
IK consists of:

We actually reformulated the result [149] using the terminology of partial solutions as given in Definition 2.2.14.
2The actual procedure formulation as we give it here is implicitly described in [149]; Our step 1 is detailed in
Section 3.1 of [149], while step 2 is described in Section 3.2 of [149]. Step 3 concerns Section 4 of [149].
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1. Pick an interleaving v of Sc (i.e. v € ||Sc);
2. Obtain its constraint set cs(v, IK);

3. Solve cs(v,IK), i.e. apply P: If success, stop and report an attack. Otherwise, go
back to Step 1.

There are many interleavings to consider in Step 1 of Procedure 2.2.17 above, given by
the cardinality of ||-. This is calculated precisely in Section 2.3.1, although now we illustrate
the case of |Sc| = 2. For such a scenario Sc with two roles, one of n events and another
of m events, then we have (™,;7™) possible interleavings, which gives an exponential number
of cases. Some interleavings can avoided, as shown in [149]: An interleaving v dominates
another interleaving v’ if for each constraint m : K’ € ¢s(v/, IK) there is another constraint
m: K € ¢s(v,IK) with K’ C K. It can be seen that every solution of ¢s(v/,IK) is also a
solution of ¢s(v, IK), so there is no need to consider interleaving v/ if we already considered
v. Typically, dominating interleavings can be chosen by always selecting a send event before
a receive event, when generating interleavings for Step 1 in Procedure 2.2.17.

2.3 Improving Constraint Solving

In this section we propose a new verification procedure that considers fewer interleavings,
without losing attacks. Let Sc be a system scenario. We say that v is a prefix interleaving of
Sc if there is an interleaving v’ € ||Sc s.t. v is a prefix of /. Also, we say that a constraint
set C'S' is unsolvable if C'S has no solution, as in Definition 2.2.14. Our new procedure is
motivated by the following simple observations.

Observation 2.3.1. 1. Let v,/ be two interleavings of Sc s.t. v is a prefix of V. Then
cs(v, IK) C es(V,IK).

2. Let CS; and C'S5 be two constraint sets s.t. CS1 C CSy and CSy is unsolvable. Then
C'S5 is also unsolvable.

Combining 1. and 2. from Observation 2.3.1 we obtain the following fact:

Remark 2.3.2. If v is a prefix of V' and cs(v,IK) is unsolvable, then cs(v',IK) is also
unsolvable.

So, whenever we find that an interleaving v has its corresponding constraint set cs(v, IK)
unsolvable, we immediately know that any interleaving v that extends v (i.e. v is a prefix of
V') is also unsolvable, and therefore does not have to be considered.

Prefix interleavings from a scenario Sc may also be seen as execution traces, usually
denoted as tr. Appending an event ev to trace tr is written (¢tr ev). Functions last and
length have the usual meaning: last((tr ev)) = ev (last is undefined for the empty trace),
length({)) = 0 and length((tr ev)) = length(tr) + 1. The prefix trace consisting of the
first 7 events is denoted as tr;, with tro = () and tr,, = tr for m > length(tr).

We say that a trace tr is derived from Sc if there exists an instance S¢’ of Se s.t. tris a
prefix interleaving of S¢’.
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Definition 2.3.3. The knowledge of a trace tr is given by K(tr) = {m | last(tr;) = (a :
mpb),i € [1...length(tr)]}

We are now ready to describe an algorithm which, given a system scenario Sc and an
initial intruder knowledge /K, non-deterministically produces a set of traces. This procedure
differs from Procedure 2.2.17 in that we do not consider different interleavings and then try
to solve the corresponding constraint set, but directly execute the scenario, by incrementally
adding events during an execution and checking that the constraint set remains solvable. This
ensures that we never consider unsolvable interleavings.

Procedure 2.3.4. A state is a 4-tuple (Sc, 1K, CS, tr), where Sc is a system scenario, IK is
the initial intruder knowledge, C'S is a simple constraint set and tr is a (possibly non-ground)
trace. An execution step from state (Sc,IK,CS,tr) to (Sc',IK,CS’ tr') is obtained by
performing the following:

1. Choose non-deterministically a non-empty role r € Sc. Let r = {(ev r'). Consider the
following cases for ev:

(a) If ev is a send communication event, let vy be the empty substitution and C'S" be

CS.

(b) If ev is a receive communication event, i.e. ev = {a : m < b), check that the
intruder can generate m using the knowledge K (tr)UIK, by applying procedure
Pio CSU{m : (K(tr)UIK)}, obtaining a new simple constraint set C'S" and
a partial solution ~y (Note that there may be many possible CS" and ).

2. Let S¢' := (Sc\ {r}U{r'})y, CS" := CS" and tr' := ( try evy ).

A run for Scy with initial intruder knowledge 1K is a sequence of execution steps starting
from state (Sco, 1K, 0, ()).

Given arun sy - 89 - - 8, for Sc with IK from Procedure 2.3.4, where s; (i € [1...n])
are states and s, = (Sc¢y, IK, CSy, tr,), we usually say that ¢r,, is an output trace of Proce-
dure 2.3.4, instead of referring to the full run. We also say that s,, is a resulting state (or just
a state) from Procedure 2.3.4.

Soundness and completeness of Procedure 2.3.4 Suppose we have a ground trace
tr = (tr’ ev), with ev = (a : m <b). We say that the event ev in tr is valid if the
intruder could produce m using IK U K (tr'). A whole trace is valid when all its receive
communication events are valid, as shown in the next definition.

Definition 2.3.5. A ground trace tr is valid w.r.t. IK if for each i € [0...length(tr) — 1],
last(triz1) = (a : m < b) implies that m € F(K (tr;) UIK).

Every (and only!) valid traces should be output in states of Procedure 2.3.4. From Theo-
rem 2.2.15 it follows that this procedure is sound and complete, as shown next.

Theorem 2.3.6. Let Scy be a system scenario and let IK be an initial intruder knowledge.
For Procedure 2.3.4, it holds:
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1. Soundness: Let (Sc,IK,CS, tr) be a resulting state in a run for Sco with initial in-
truder knowledge 1K. Then for every solution o of C'S, (i) tro is derived from Scg
and (ii) tro is valid w.rt. IK.

2. Completeness: Let tr be a valid trace w.rt. 1K derived from Scy. Then there exists a
resulting state (Sc,IK,CS,tr') in a run for Scy w.r.t. IK and a substitution o s.t. ©
is a solution of C'S and tr = tr'c.

Proof. See Appendix A.l. O

2.3.1 Attacks, Partial Runs and the Termination condition

Procedure 2.2.17 considers complete interleavings where all events from a scenario Scy are
included. It is shown [149] that if any interleaving is solvable, then an attack is found.

Differently from Procedure 2.2.17, our Procedure 2.3.4 outputs execution traces which
are instances of prefix interleavings representing partial runs, in which not every participant
necessarily finishes its execution. For example, the empty trace () is always output regard-
less of the input scenario Scy or 1K in Procedure 2.3.4. Clearly, the empty trace does not
represent an attack on the protocol in question. We thus need to include a rermination condi-
tion TC(s) which is evaluated in each resulting state s of a run from Procedure 2.3.4. When
T'C(s) holds, we know that an attack has happened and we can then stop execution and report
the attack trace. Otherwise, execution should continue in search for another attack.

In the following we instantiate TC'(-) with a basic termination condition to check basic
secrecy and authentication properties. In the next sections we propose other instantiations to
TC(+), in which the termination condition allows to cover complex properties expressed in a
temporal language in Section 2.5 and security against guessing attacks in Section 2.7.

Definition 2.3.7. Let Scy be a scenario and let A be a set of protocol roles s.t. A C Scgy. Let
(Sc,IK, C'S, tr) be a state in Procedure 2.3.4. We define the predicate TC 4 ({S¢, IK,CS, tr))
to hold when for every role v € Sc with r # (), r is not a suffix of any instance of some role
r’ e A

Intuitively, when T'C'4(s) holds then it means that every role ' € A has finished its
execution in state s = (Sc¢, IK, CS,tr). As we see now, this definition of T'C'4(-) allows to
specify suitable termination conditions for both secrecy and authentication.

Example 2.3.8. Consider scenario Sc’ from Example 2.5.2. We set A = {secret(ks)}. Then
TC 4(+) holds when role secret(ks) is finished, which means that event (e : x<le) is executed
and hence ks is not secret anymore.

Example 2.3.9. Consider scenario Sc” from Example 2.5.2. We set A = Sc”’. Then TC 4(+)
holds when the responder role is finished, and since no corresponding initiator is present
then this means that an authentication attack took place.

Furthermore, using this termination condition we can detect attacks involving partial runs.
Suppose we have a scenario Sc with two roles r, 7" € Se, with T'C{,4 (). One possible attack
over 7 may require 7’ to execute partially with 7’ remaining stuck and thus unfinished (e.g.,
expecting a message that the intruder cannot generate). Still, since r finishes, Procedure 2.3.4
would find the attack. However, Procedure 2.2.17 would fail to find the attack since only
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complete interleavings are considered, in which both r and r’ are required to finish their
executions.

Attacks regarding partial runs occur commonly in security protocols, as illustrated below
in the Woo and Lam mutual authentication protocol [165], shown here as Protocol 2.2. The
protocol aims at establishing a session key and provides mutual authentication between two
principals a and b, with the help of a trusted server s. a starts by sending her identity and
a nonce n, to b (Message 1). b responds by sending b and n;, (Message 2). Then a sends
an encrypted message intended for s, using k., a long term shared key between a and s
(Message 3), which b forwards along with a message of his own using the shared key ks
between b and s (Message 4). s checks that the principal identities and nonces match on
both encrypted messages, then selects a new key k,;, to be used by a and b. Subsequently,
the server creates two encrypted components, one for each of a and b, and returns both of
them to b (Message 5). b decrypts his component to obtain the key, and then forwards the
other component to a, along with a component encrypted with k., (Message 6). Finally, a
decrypts her component to learn the key, and returns a message to b (Message 7).

Message 1. a — b: (a,ng)

Message 2. b — a: (b,nyp)

Message 3. a — b: {a,b,ng,np},.

Message 4. b — s:{a,b,ng, "}k, ., {0 b, ey Tty
Message 5. s — b: {b,ng, N, kab Feyor 10 Nay Mo, Kab Fiey.
Message 6. b — a: {b,ng, np, kap } oo s {Ma, b iy
Message 7. a — b: {np}k,,

Protocol 2.2: Woo-Lam mutual authentication protocol

Example 2.3.10. A possible attack over Protocol 2.2 is described by Lowe [132]. The attack
uses two sessions, o and 3:

Message a.1. e, — b: (a,b)

Message a.2. b — eq o (b,ny)

Message a.3. e, —b: X

Message a.4. b —es: X, {a,b,b,np}g,.

Message 8.1. e, — b: (a,np)
Message 3.2. b — eq : (b,ny)
Message 3.3. e, —b:Y

Message 3.4. b — es: Y, {a,b,ny,n}}i,.
Message a.5.  es — b: Z,{a,b,ny,n}},,
Message o.6. b — eq 2 Z,{(b,np)}n;
Message a.7. e, —b: {nb}%

In message o1, the intruder starts to impersonate a (denoted as e,) to attack b, choosing b
as the nonce (This is known as a type-flaw confusion, which may occur in implementations
where principal identities and nonces have the same bit length, for example.) b responds in
Message .2 by returning b and ny,. Then, the intruder sends any bit-string X (Message a.3).
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b forwards an encrypted component of the appropriate form to s (Message «..4). The intruder
intercepts this message, and starts a second run, (3, again impersonating a. In message [3.1,
eq sends ny, and b returns nj, (Message (3.2) and the intruder again responds some bit-string
Y (Message 3.3). Then b sends Message (3.4, which is precisely of the form expected by b
in message o.5. Hence ey forwards this message to b, and b accepts nj, as a session key.
Finally, b sends an appropriate Message o..6 and the intruder returns the component {nb}”;
(Message o.7).

The attack involves a partial run, since session 3 above is left unfinished and stuck, since
the attacker cannot provide the required message (3.5. Still, the attack is successful against
session ¢, and it is found by Procedure 2.3.4 but not by Procedure 2.2.17. However, it is
possible to ‘patch’ Procedure 2.2.17, by modifying Step 3. In a scenario Scy, we take a role
r € Sco and add a special send communication event (z : stop > y) where stop is a special
fresh constant. Then we can modify the solving step (i.e. Step 3 in Procedure 2.2.17) so that
as soon as stop is seen in a constraint, the solving process is stopped and declared successful.
For example, the artificial role for checking secrecy is now secrecy(X) = (e : X <e)(e :
stop > e). This modification allows Procedure 2.2.17 to also cope with partial runs. The
modification was later implemented by Millen [147], thus regarding both procedures 2.2.17
and 2.3.4 capable of supporting partial runs.

2.3.2 Comparison and Benchmarks

Let S¢ = {ry,...,r,} be a scenario. Recall that ||Sc is the set of all possible interleavings
from Sc. The cardinality of ||Sc, i.e. | ||Sc |, can be calculated by counting the possible
permutations of length o = Y7 | |r;|, i.e. o!, divided by the number of permutations of
each sequence of |r;| to count only one possible ordering. This is known as a multinomial
combinatorial [72]:

o!

Sc| = ———
HISel = T

— (raltlraD! (|T1\+|rz\)

For Sc¢ = {ry,r2}, we have |Sc| = n = 2 and we get | ||Sc | e = O gl
as anticipated at the end of Section 2.2.11.

Given a scenario Sc, Procedure 2.2.17 makes | ||Sc | calls to the reduction procedure P
in the worst case, when no interleaving v € ||Sc is solvable. In general, | ||Sc | is huge.
For example, for the three message protocol used in the benchmarks in the next section, a
scenario with four initiators, four responders and one secrecy check generates more than 1019
possible interleavings.

We now consider different scenarios in which we compare Procedure 2.2.17 to our Pro-

cedure 2.3.4.

A Linear Best Case for Procedure 2.3.4 Let /K = {e} be the initial intruder knowledge
and let S¢ = {ry,...,r,} be a scenario in which every eventin r;, 7 € [1...n]is a
receive event (We do not consider send events so we can avoid the send optimization as
described right after introducing Procedure 2.2.17. This still provides a fair comparison
since the send optimization applies to both procedures). Also assume that for each
i€ [l...n],r; = (ev; r}) s.t. its associated constraint is not solvable (e.g. ev; = (a :
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’ # roles \ description \ Procedure 2.3.4 (time (s)) \ Procedure 2.2.17 (time (s)) ‘

3 1A1B 0.01 0.01

5 2A2B 0.05 0.34
7 3A3B 10 206

8 3A4B 27 2289
8 4A3B 21 9531
9 4A4B 10380 230042

Table 2.2: Comparison between Procedure 2.2.17 and Procedure 2.3.4

secret < b) for secret € C and secret # e). This implies that for every v € ||Sc,
¢s(v,IK) is unsolvable.

As we already mentioned, Procedure 2.2.17 makes | ||Sc | calls to P. On the other
hand, Procedure 2.3.4 considers just n calls to procedure P with each corresponding
constraint which is unsolvable by assumption. This case shows a significant efficiency
gain of Procedure 2.3.4 (which is linear in n) over Procedure 2.2.17 (which is of expo-
nential order of n).

A Worst Case for Procedure 2.3.4 Let /K = {e} be the initial intruder knowledge and let

ev be the event ev = (e : e<e). Let r = (ev...euv,,) be a role consisting of m
copies of event ev, so that ev; = ev fori € [1...m]. Let S¢/ = {ry,...,r,} be
a scenario in which every eventinr; = r, 4 € [1...n — 1], and r,, = (ev’) with
ev’ = (a : secret 4b).

Here, Procedure 2.2.17 makes | ||S¢’ | calls to P. However, now Procedure 2.3.4

W calls to P, which is better than the number of calls made by
i=1 ITil*
Procedure 2.2.17 but still of the same (exponential) order.

makes

Benchmarks As benchmarking protocol, we use the Bilateral Key Exchange with Public
Key protocol (BKEPK) (described in the Clark and Jacob library [71]), which appears here
as Protocol 2.3. We checked secrecy of nonce n.

Message 1. b — a: b, {(ns,0)} ;)
Message 2. a — b: {h(ny),nq,a, kab}[;;(b)
Message 3. b — a: {h(ny)}x,,

Protocol 2.3: Bilateral Key Exchange protocol

Our test-bed is a Pentium Xeon 2.8 GHz running Linux 2.6.5-7 and XSB Prolog 2.2 (Ts-

ingtao). The comparison is shown in Table 2.2. We always add one secrecy check role
(checking secrecy of nonce n). The description field gives an idea of the scenario tested.
For example, 2A2B means that we are including 2 A roles and 2 B roles (thus plus the
secrecy check makes 5 roles in total).
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Further Experiments with protocols from Clark and Jacob library We ran Pro-
cedures 2.3.4 and 2.2.17 and confirmed several known attacks over protocols from the Clark
and Jacob library [71]. We analyse eleven (representative for their different vulnerabilities)
protocols, out of the total forty two (including variants of the same protocols) listed in the
library. Table 2.3 lists the performance and the attacks found. The timings are similar for
both procedures, since we are checking scenarios that are too small for the optimization of
Procedure 2.3.4 over Procedure 2.2.17 to be highlighted.

| Protocol [ Attack [ Proc. 2.3.4 [ Proc. 2.2.17 ‘
Encrypted Key Exchange Parallel Session 0.01 0.02
ISO sym key 1-pass unilat auth Replay 0.01 0.02
ISO pub key 2-pass mutual auth Replay 0.01 0.01
Needham-Schroeder Man-in-the-middle 0.01 0.07
Needham-Schroeder PK Man-in-the-middle 0.01 0.02
Needham-Schroeder-Lowe PK Type Flaw 0.01 0.02
Neuman Stubblebine Type Flaw 0.02 0.01
Otway-Rees Type Flaw 0.01 0.01
SPLICE Replay 0.01 0.02
Woo-Lam Mutual Authentication | Parallel Session 0.02! n/a’
Yahalom with Lowe’s alteration Type Flaw 0.02 0.02

Table 2.3: Benchmarking time to find known attacks using Procedure 2.3.4

Implementation We implemented Procedure 2.3.4 using Prolog, modifying Millen and
Shmatikov’s implementation [149]. The above benchmarks and experiments can be executed
from an available online demo website [7] (which also includes more protocol examples not
included here).

2.4 Negated Constraint Solving

Up to now we have considered positive constraints m : T. They are called positive since
their solution decides whether there exists a substitution ¢ s.t. mo can be built from T'o. In
the following we consider negated constraints, whose solution decides whether there exists
a substitution o s.t. mo is not derivable from T'c. Negated constraints are going to be useful
in the following sections (both Section 2.5 and 2.7), so we introduce and develop negated
constraints in this section.

Definition 2.4.1. A negated constraint is denoted by —(m : T), where m is a term and T
is a set of terms. o is a solution of ~(m : T) if mo & F(To), in which case we say that
—(m : T) is solvable.

If both m and T are ground, then procedure P (see Theorem 2.2.15) can be used to solve
—(m:T):

!Originally in [5] the reported time was 30.96. Thanks to Cas Cremers and Ari Saptawijaya for pointing out that
the protocol can be modelled more efficiently.
2 Attack not found due to the requirement of partial runs.
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Corollary 2.4.2. Let m be a ground term and let T' be a set of ground terms. Then —(m : T)
is solvable iff P applied to m : T fails.

Proof. By Theorem 2.2.15, P fails iff for all o, mo ¢ F(T'o). Since m : T is ground, we
obtain that P fails iff m ¢ F(T), establishing the property. O

When P succeeds, we know that there exists one substitution o s.t. mo € F(T'o). So if
P fails, we have that for all substitutions o, mo ¢ F(Tc); However, what we are trying to
establish is whether there exists one substitution o s.t. mo & F(Tc). In the case that m : T
is ground, then the two cases collapse and hence we can use Corollary 2.4.2. However, when
m or 1" is non ground, we cannot use P straightforwardly.

Example 2.4.3. Consider the negated constraint —=({ X }y : {{secrety }secret,,€})- Apply-
ing procedure P to {{ X}y : {{secret}sccrets, €}} succeeds, assigning secrety to X and
secrety to Y. However, the negated constraint is solvable, e.g. by assigning e to X and
secreta to Y.

Given a state (Sc,IK, CS, tr) from Procedure 2.3.4 for a run of input scenario Scy and
IK and given a negated constraint ~(m : K (tr')UIK)? for some term m and some ¢’ prefix
trace of ¢r, we are interested on finding a solution o of both C'S and —~(m : K (¢tr") U IK).

We now present a simple strategy to solve C'S U =(m : K(tr') UIK) when K (tr') is
possibly non ground, although m has to be ground. This solution is enough for our current
purposes, as all our security properties are covered; a solution for the general case is still a
matter of current research.

Initially, we include a set of fresh constants to the attacker knowledge, one for each vari-
able occurring in the input scenario Scy. More formally, we assume that the initial intruder
knowledge /K includes a set of constants Cy = {c¢x | X € V and X occurs in Scg } (recall
that V is the set of variables) thus Cy, C IK. Cy contains intruder generated constants
which do not occur in the input scenario, and hence are never needed to to solve the positive
constraint solving phase of C'S (the use of these constants is inspired by the work of Kihler
and Kiisters [115]).

Let oy be the substitution that maps every variable X to the corresponding constant
cx. Our solving strategy consists on checking whether oy is a solution of C'S U =(m :
K(tr') UIK). Intuitively, using a fresh constant for each variable gives the best chances for
the negated constraint —(m : (K (¢tr') UIK)oy ) to hold; any other arbitrary solution o could
assign variables to terms which are more related to each other than the (completely unrelated)
fresh constants used by oy, thus giving more chances that the attacker can derive m from
(K (tr'") UIK)o. This result is formalized below, where T Z S means that no term ¢ € T'
occurs in any term s € S and T A s means that no term ¢ € 7" occurs in s (see Appendix A.1
for the formal definition of <).

Theorem 2.4.4. Let (Sc,IK,CS,tr) be a state from Procedure 2.3.4 where for each X :
Tx € CS,Cy CTx and Cy A Tx \ Cy. Let tr' be a prefix of tr and —=(m : K (tr") UIK)
be a negated constraint, where m is ground and Cy A m. Let o be a substitution with
X :Tx € CS, Cy A Xo. Then o is a solution of both C'S and —=(m : K (tr') UIK) iff ov
is a solution of both C'S and —(m : K (¢tr") U IK).

3For readability we only consider one negated constraint; the extension to the general case is straightforward.
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Proof. See Appendix A.1. O

The proof of this theorem is not easy, and involves e.g. extending the fake function F(-).
The result relies on a series of lemmas, as reported in the Appendix A.1.

Now, the problem of deciding whether a negated constraint —(m : K) is solvable (where
m is ground) is solved by Theorem 2.4.4, which tells us that —=(m : K) is solvable iff
moy : Koy is solvable, something that can be easily checked using P as described in
Corollary 2.4.2.

2.5 PS-LTL

As we already observed in Section 2.2.3, constraint-based verification procedures are poor
when it comes to specifying the properties one wants to check. For example, checking au-
thentication is done in an ad-hoc manner, by e.g. adding a protocol participant but not its
corresponding party, and observing whether the participant can still finish its run. This is
coarse-grained, and cumbersome to implement (besides this, only a built-in notion of authen-
tication is implemented by Millen [147] in his Prolog implementation). Checking secrecy is
also ad-hoc, by adding an artificial protocol role which expects a secret no other participant
would send. As we shall see, when secrecy is an atomic predicate being part of a language,
more interesting properties can be stated about secrecy.

In this section we propose a new language to specify security properties, based on linear
temporal logic (LTL) with pure-past operators, called PS-LTL (pronounced as pastel). PS-
LTL provides adequate flexibility, allowing one to specify several security properties like au-
thentication ([133, 75]) (including aliveness, weak agreement and non-injective agreement),
secrecy (standard secrecy [56] and perfect forward secrecy [84]) and also data freshness. We
also present a (preliminary) study of specification of denial of service (DoS) [142] within
our language. While the semantics of PS-LTL is defined as usual on concrete (variable-
free) traces, constraint-based protocol verifiers generate symbolic traces which contain con-
strained variables (i.e. variables which may be instantiated only with values the attacker can
compute). We present a decision procedure which allows to check a relevant subset (that
covers all the properties of interest) of PS-LTL on the symbolic traces produced by con-
straint solving systems. Moreover, we show the soundness and completeness of our decision
procedure.

We start by extending our events, to allow not only communication events but also status
events, issued by a participant to denote their current state in the execution of their protocol
roles.

Definition 2.5.1. An event is one of the following:
e A communication event as in Definition 2.2.3;

o A status event p(dy,- -+ ,dy,), where n > 0, d; is a term for i € [1...n| and p is a
Sfunction symbol.

We consider three different, self-explanatory status events: start, run and end (see
Example 2.5.2).
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Typically, status events include information about the state of an principal. Examples
include events that indicate that the principal has started an execution, that it is currently
running an execution or that it has ended an execution. Moreover, a status event may also
include state information, for example to indicate which principal is believed to be the corre-
sponding party in an execution, or what session key is believed to be shared at the end of an
execution. Here, belief of a fact does not mean that the fact holds in reality; indeed, we are
going to look for situations in which such beliefs are indeed false. Other approaches, like the
BAN logic [65], instead try to (manually) prove that the beliefs hold.

Example 2.5.2. Using status events, we can decorate the roles from Example 2.2.6, of Pro-
tocol 2.1.
We show the status events in bold typeface.
init(A, B, Na, K1, Ks;) = (start(A, B, initiator)

(A: (A, Ny)>B)
(A {(Na, Kst) } i, < B)
run(A, B, initiator, N, Ky, Kgt)
(A:{Na}tk. > B)
end(A, B, initiator, Na, Ky, Kt) )

resp(A, B, Na, K;;, Kgt) = (start(B, A, responder)
(B: (A, Ny)<A)
run(B, A responder, Na, Kj:, Kgt)
(B {(Na, Koo) e o A)
(B {NaYx., < A)
end (B, A responder, Na, K¢, Kg) )

While start and end status events are located in the obvious places, the position where
run status events are located is more subtle. Our rule is that run events are located as soon as
the protocol role has received every piece of data relevant to the protocol run (this becomes
relevant in Section 2.5.2).

2.5.1 Syntax and Semantics

We now introduce our language for writing security properties. Then we provide a semantics,
in the form of concrete and symbolic validity.

Definition 2.5.3. A PS-LTL formula is defined by the following grammar:

¢ = true|false|p(dy,...,d,)|learn(m) | —¢| oA | OV O
| Yo | ¢S¢ | Fv.¢ | Vu.¢

where each d; (i € [1...n]) and m is either a variable in'V or a ground term in T+,

Standard formulas true, false, ¢, ¢ A ¢, ¢ V ¢ carry the usual meaning. Formula
p(dy,...,dy,) is a status event. learn(m) is a predicate stating that the intruder knows
term m (we borrow the name from NPATRL [161]). Y¢ means ‘yesterday ¢ held’, while
¢1S¢2 means that ‘¢, held ever since a moment in which ¢, held’. When v € V, we
write Jv.¢ and Vv.¢ to bind v in ¢, with the quantifiers carrying the usual meaning with v
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ranging over terms. Other operators can be represented using the above defined operators:
@1 — @2 is defined as =1 V ¢2; 0¢ (once @) is a shorthand for true S ¢ and finally He
(historically ¢) is a shorthand for -0—¢. For clarity, we impose a precedence hierarchy for
operators, where unary operators bind stronger than binary operators. Operators Y, 0, and H
bind equally strong and bind stronger than —. The precedence hierarchy for binary operators
isS > A >V >—, where op; > ops means “op; binds stronger than op,”. In the sequel, we
assume that PS-LTL formulas are closed (i.e. they contain no free variables), and that each
variable is quantified at most once; Also, we assume that the variables occurring in a formula
¢ are disjoint from the variables occurring in execution traces tr from the considered system
scenario (this can always be achieved by alpha conversion).

Our semantics (tr,IK) = ¢ is defined for two different cases: First, we define it when
tr is a ground trace, which we call concrete validity. Then, we extend the semantics to the
general case, in which ¢r may be symbolic. This establishes symbolic validity. Given a trace
tr, we recall that ¢r; denotes its prefix trace consisting of the first ¢ events (see Section 2.3).

Definition 2.5.4 (Concrete validity). Let ¢ be a closed PS-LTL formula, tr be a ground
trace and IK be an initial intruder knowledge. We then define (tr,IK) = ¢ as:

(tr,IK) = true
(tr,IK) [~ false

(tr IK) = p(dy,...,dn) iff tr=(tr'qlei,...,em))

and p(dy,...,d,) =qle1,...,em)
(tr,IK) = learn(m) iff me F(K(tr)UIK)
(tr 1K) |= i (1K) e
{tr, IK) = Jv.p ff IeT:(trIK)E=['/,]
({tr, IK) = Vv.@ iff VteTt:(trIK) E ¢['/.]
(tr,IK) = @1 A @2 iff (rIK) | 1 and (tr,IK) = ¢
(tr,IK) = @1V @2 iff (trIK) | o1 or (tr,IK) = @2
(tr,IK) = Yo iff tr=(r'ev)and (tr'|IK) E ¢
(tr,IK) = 1892 iff Fie[0,length(tr)] : ({tri,IK) = @aA

Vj € i+ 1,length(tr)] : (tr;, IK) = ¢1)

The following proposition shows that the semantics of 0 and H coincide with the intuitive
ones:

Proposition 2.5.5. Let tr be a ground trace, IK the initial intruder knowledge and ¢ a closed
PS-LTL formula. Then:

(i) (tr,IK) |=0¢ iff 3i € [0,length(tr)] : (tr;, IK) = ¢, and
(ii) (tr,IK) =Ho iff Vi € [0, length(tr)] : (tr;, IK) = ¢.
Proof. Straightforward from unfolding Definition 2.5.4. U

In fact, we can also state and prove other standard results for LTL and infinite traces, like
the tautology Hp — 0¢. Furthermore, we can state some particular relations of PS-LTL:

Proposition 2.5.6. For every trace ground tr, IK and message m.:

(i) (tr,IK) |= learn(m) iff (tr,IK) = 0 learn(m) iff
(tr,IK) = learn(m) S learn(m), and
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(ii) (tr,IK) = Y learn(m) implies (tr,IK) |= learn(m).

Proof. Straightforward from unfolding Definition 2.5.4 and the monotonicity of F(-), i.e.
F(K(tr;)) UIK) C F(K(tr;) UIK) for each i < j. O

The proposition intuitively shows that the intruder never forgets information.

2.5.2 Writing Security Properties with PS-LTL

In this section we show how to specify several security properties in PS-LTL for the BAN
Concrete Andrew Secure RPC protocol [65], shown in Example 2.2.6. We report that in
addition to this protocol, we also have successfully used our tool for several other protocols
(we already analysed over twenty protocols from the Clark Jacob library [71]).

Authentication

First we specify various forms of authentication as defined in [133]. We cover all the variants
except injective agreement, which would require counting events in a trace. (In principle, as
future work we could extend our system to cover injective agreement, which would result
on the ability to detect some replay attacks on which injective agreement is violated but
non-injective agreement is satisfied.)

We detail the case of authentication of the initiator to a responder (the converse is similar).

Aliveness The aliveness property is the weakest form of authentication in Lowe’s hierar-
chy:

A protocol guarantees to a responder A aliveness of another principal B if, whenever A
(acting as responder) completes a run of the protocol, apparently with initiator B, then B
has previously been running the protocol.

Notice that B may have run the protocol with a principal other than A. The aliveness of
principal B to responder A can be specified in PS-LTL as follows:
VA, B,D1,D2,D3.3A' R . end(A, B,responder, D1, D2, D3) — 0 start(B, A', R)

The aliveness property is violated for our protocol of Example 2.2.6 on a scenario con-
taining at least two protocol sessions (i.e. two initiators and two responders). We ran our tool
on the scenario

{ant(aﬂ bu Ng, klt7 Kstl)a ant(b, a, Ny, klty Kst2)7 resp(ba a, N37 klt» kstz)} (22)
and found a similar attack to the one found by Lowe [132]. Furthermore, we also checked

the aliveness property for Lowe’s fixed version of BAN concrete Andrew Secure RPC proto-
col [132], and found no attacks thus confirming the validity of Lowe’s fix.
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Weak Agreement Weak agreement is slightly stronger than aliveness:

A protocol guarantees to a responder A weak agreement with another principal B if, when-
ever A (acting as responder) completes a run of the protocol, apparently with initiator B,
then B has previously been running the protocol, apparently with A.

For this property, B may not necessarily have been acting as initiator. The weak agreement
property can be expressed in PS-LTL as follows:

VA, B,D1,D2,D3.3R'. end(A, B, responder, D1, D2, D3) — 0 start(B, A, R")

Since weak agreement is stronger than aliveness, the attack mentioned above also applies
(e.g. can be found using scenario (2.2)).

Non-injective Agreement Non-injective agreement is slightly stronger than weak agree-
ment:

A protocol guarantees to a responder A non-injective agreement with another principal B
on a set of data items D if, whenever A (acting as responder) completes a run of the proto-
col, apparently with initiator B, then B has previously been running the protocol, apparently
with A, and B was acting as initiator in his run, and the two principals agreed on the data
values corresponding to all the variables in D.

The property is formalized in PS-LTL as follows (our tool also discovers the attack to this
property, using e.g. scenario (2.2)):

VA, B,D1,D2, D3.end(A, B, responder, D1, D2, D3) —
0 run(B, A, initiator, D1, D2, D3)

Secrecy

We now turn to study secrecy. In particular, we focus on two particular notions of secrecy,
viz. standard secrecy and perfect forward secrecy.

Standard secrecy We define first the simple case of standard secrecy, which is the in-
ability of an attacker to obtain the value of the secret [56]. Recall scenario Sc’ of Example
2.5.2. The secrecy of the session key k;, once the initiator a started a protocol run with the
responder b, can be checked by the PS-LTL formula ~1earn(k,;). We checked this property
with our tool and found no secrecy attack on Sc¢’.

Perfect Forward Secrecy We now consider the more challenging case of perfect for-
ward secrecy (PFS). We follow the definition given by Diffie, et.al [84]:

An (authenticated key exchange) protocol provides perfect forward secrecy if disclosure of
long-term secret keying material does not compromise the secrecy of the exchanged keys from
earlier runs.

In Diffie et.al [84], the proposed Authenticated Diffie-Hellman key exchange protocol pre-
serves PFS, since long term keys are only used to sign messages and are never related to the
session key derivation. This is not the case for the RPC Andrew protocol and its variants,
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since the short term key is directly encrypted by the long term key (see below for an example
of a secure protocol).

We model the disclosure of a long term secret, like k;; in the RPC Andrew protocol,
by providing an additional protocol role which contains only one send event that leaks k;;
to the intruder. A violation of PFS happens in a situation in which (i) a protocol run has
been executed in the past and the short term session key used in the run (kg; in our example)
remained secret; (ii) the long term key k;; is learnt by the intruder; and finally (iii) the short
term key kg, that was secret during the run is now compromised, i.e. learnt by the attacker.
We express PFS in PS-LTL as follows:

VA, B,N, Kj;. learn(Kj;)A
Y(0 (end(B, A, responder, N, Kj;, ks:) AH —learn(ks:))) — H —learn(ke)

The negation of this formula captures our desired violation. Thanks to Proposition 2.5.6, we
can rewrite the property more efficiently:

VA, B,N, Kj;. learn(Kj;)A
Y(0 (end(B, A,responder, N, Kj;, kst) A —learn(ky))) — —learn(ks)

Our tool finds the straightforward attack quickly in the following appropriate scenario:

{init(a,b,na, kiz, Kst),resp(a,b, Na, ki, kst), { (leaker : ki >e) )}

A secure protocol w.r.t. PFS Consider the following protocol shown as Protocol 2.4.

Message 1. a — b: {(pk(ra),b) }r,,
Message 2. b — a: ({Kst} () {(A(Kst), a) by,

Protocol 2.4: A protocol satisfying perfect forward secrecy (PFS)

Protocol 2.4 is a modified version of the protocol due to Boyd and Mathuria [61] that aims
to meet perfect forward secrecy.* Agents @ and b share a long term key k;;. Agent a generates
a fresh asymmetric key pair in every protocol run (indicated by a fresh r,) and discards it
after the run is completed (thus the key pair is ephemeral). In the first message, a encrypts
the public part pk(r,) together with b’s identity with k;; and sends it to b. Upon receipt, b
obtains pk(r,) and then replies by encrypting the freshly generated short term session key
kst with pk(r,) and encrypting the hash of kg and a’s identity with k;;.

Although the disclosure of k;; after a completed protocol run allows an attacker to imper-
sonate a or b in the subsequent runs, it does not provide the attacker with the ability to recover
the session key kg; from the previous run. This session key can only be recovered using a’s
private key from the completed run (which has been discarded as soon as the protocol run
completes).

In a scenario in which the short term key chosen by the responder is k,;, we can check
PFS as follows:

“#Note that the protocol provides only one-way authentication, viz. the authentication of b to a.
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VA, B,N, Kj;. learn(Kj;)A
Y(0 (end(A, B,initiator, N, Kj;, kst) A —learn(ks))) — —learn(ks)

Our tool found no attack in appropriate scenarios, thus confirming the analysis of a similar
protocol by Delicata and Schneider [81].

Data Freshness

We state the data freshness property as follows:

Data D is fresh whenever a principal A (either as an initiator or as a responder) never
completes a run with another principal agreeing on D, if in the past A (either as an initiator
or as a responder) has already completed a protocol run with another principal agreeing on
the same data D.

The freshness PS-LTL property of a short term session key K for the protocol of Example
2.2.6is:

VAaBlaR17N17K1aK7 B27R2;N27K2-
Y(O end(A,Bl,Rl,Nl,Kl,K)) — —\end(A,Bg,RQ,NQ,KQ,K)

We run our tool to check the freshness of the session key k4; on an appropriate scenario, and
obtained an attack similar to the previous aliveness attack. In this attack, the session key k;
is used twice, i.e. when a was acting as an initiator in one session and as a responder in
the other session. Thus, it violates the freshness of k ;. For Lowe’s fixed version of BAN
concrete Andrew Secure RPC protocol [132], no attack was found as expected.

Towards analysing Denial of Service attacks

We now sketch how to specify a property which can unveil potential vulnerabilities of denial
of service (DoS) attacks [142] In the protocol of Example 2.2.6, the first message (a, n,) can
be generated cheaply by anyone (not necessarily by a). On the other hand, upon receiving
(a,ng), b commits to perform several expensive operations (e.g., generating the session key
kst and allocating the state for the running session). This is a typical situation in which
one can mount a DoS attack against b. To do this, an attacker simply needs to start several
sessions which cause b to reach its run event: i.e., the point at which b commits to carrying
out a computationally expensive part of the protocol. The attack is possible because starting
such a session is computationally unexpensive, and many such sessions can be launched in a
short time, thereby exhausting b’s resources.

To spot this vulnerability using PS-LTL we use the following formula, specifying that if
aresponder b reaches the computationally expensive part of a session (indicated by b emitting
the run event), then the honest initiator a has once started a session with b:

VA, B, D1, D2, D3. run(A, B, responder, D1, D2, D3) — 0 start(B, A, initiator).

A violation to this formula would indicate that an attacker could easily impersonate a to
mount a DoS. Note that the attack does not require that b finishes his execution (and reaching
the end event): thus this property differs from the authentication ones reported above.
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We successfully used our tool to check this formula on a single session and obtain a trace
that thus indicates the vulnerability to DoS attacks. When we modified the protocol by en-
crypting the first message using the long term key k;; (i.e. Message 1 becomes {(a, n4)},,)
the trace indicating the weakness disappeared. Intuitively, this extra encryption allows only
honest participants, who share k;;, to generate the first message. (Still, the attacker could
replay Message 1 and continue mounting the DoS attack; this would however be detected by
an injective analysis, as discussed in the beginning of Section 2.5.2.)

2.5.3 Deciding PS-LTL Validity in Constraint Solving

The constraint-based Procedure 2.3.4 presented in Section 2.2.4 outputs symbolic traces con-
taining constrained variables. In this section we show how to decide validity of a PS-LTL
formula against such a symbolic trace.

Since in the previous section we defined validity (called concrete) only w.r.t. ground
traces, the first thing we need to do is to extend the notion of validity for symbolic traces.

Definition 2.5.7 (Symbolic validity). Given a trace tr derived from a system scenario Sc and
the initial intruder knowledge IK, we say that (tr,IK) |= ¢ when for every valid instance tr'

of tr, (tr',IK) [= ¢.

Let ¢ be a closed PS-LTL formula representing a security property. We let A, = —¢ be
its corresponding attack property. Given a symbolic trace ¢r and the initial intruder knowl-
edge IK, we now define a procedure D that tries to find a valid ground instance tr’ of tr
s.t. (tr',IK) = A,. If D succeeds, tr’ represents a violation of ¢ (hence an attack), since
(tr', IK) = A, iff (tr', 1K) }= o, and thus (tr, IK) = . On the other hand, if D fails, then
we know that there is no tr’ s.t. (tr/,IK) |= A,. In other words, for every ground instance
tr’ of tr, (tr' IK) = ¢, i.e. (tr,IK) | . Thus D decides symbolic validity.

Let ¢ be a closed PS-LTL formula representing a security property. We let A, = —¢ be
its corresponding attack property. Given a symbolic trace tr and 1K, we define a procedure
D (in Section 2.5.3) that tries to find a ground instance tr’ of tr s.t. (tr',IK) = A,. If
D succeeds, tr’ represents a violation of ¢ (hence an attack), since (tr',IK) = A, iff
(tr' , IK) £ ¢, and thus (tr,IK) £ . On the other hand, if D fails, then we know that
there is no 7’ s.t. (tr/,IK) = A,. In other words, for every ground instance tr’ of tr,
(tr' IK) = @, i.e., (tr,IK) = . Thus D decides symbolic validity.

Our approach consists of two stages. We first translate a closed PS-LTL formula ¢
into a (shown equivalent) elementary formula EF, as defined below, using the transformation
T developed next in Section 2.5.3. Then, we input the translated formula to the decision
procedure D, presented in Section 2.5.3.

Definition 2.5.8. Elementary formulas E'F' (ranged over by ) are defined by the grammar:
m=true | false |ty =t |m: K |-w|7nAx|7Vr|Ivr| Vo

Here each ¢, t5 and m is either a variable or a ground term, K is a set of terms and v is
a variable.

Let 7 be an EF formula. We define its left free variables free;(w) and its right free
variables free,(m), as follows:
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free;(true) = free(false) = 0

free(ty =ts) = war(ty)

free((m: K = war(m)

free (—m) = free/(n)

freei(m Ama) = free((m V) = free(m)U free/(ms)
free;(Ju.r) = free;(Vo.m) = free(m)\ {v}

free,(m) is similar, but defined with: free,(t; = t2) = var(ts) and free.(m : K) =
var(K). We now give a semantics of an EF formula 7 w.r.t. a ground substitution o.

Definition 2.5.9. Let 7 be an EF formula and o a ground substitution s.t. free;(r) = () and
free.(m) = dom(o). Then o =" = is defined by:

o ' true

o £ false

U':/tlztg lﬁ“ t1=t20'

cE'"m: K iff meF(Ko)

o —-w iff ol w

cE' m AT iff o mandoE m
cE' mVmry iff o morolE m
o= Jur iff FHeTt:oFE n['/)
o = Yo iff VteTt:oFE n['/]

First Stage: Translating PS-LTL

We define a translation T'(¢, tr, 1K) from a PS-LTL formula ¢, a trace ¢r and an initial
intruder knowledge /K into an EF formula:

Definition 2.5.10. Let ¢ be a PS-LTL formula, tr an execution trace and IK an initial in-
truder knowledge. Then T'(¢, tr, 1K) is the EF formula resulting from applying the following

three steps:

1. First, we repeatedly apply transformation |- |-, defined below, until none of the rules

can be applied:
[Fu.gltr = Fu.|o|tr
[Vv.gltr = Vou.|¢|tr
~oltr = -[6ltr
[d1 A doltr = |o1]tr A lda]tr
o1V goltr = |g1]tr V [d2]tr
[Yo|() = false
Yolitre) = [6)tr
(615620 = [62)0)
6:56a(tre) = Lbal(tre)V
([Pr](tre) A 18¢a]tr)
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[true|tr =  true
|false|tr = false
|Learn(m)|tr = m: (K(tr)UIK)
Ip(dy,...,dn)|() = false
p(di,...,dn) |[{tr q(e1,...,em)) = falseifpF#qorn#m
[p(dy, ... dn)|{trpler,...,en)) = di=erA---ANd,=¢ey,

(Note interestingly how a learn translates directly into a constraint. Also, notice that
in each equality d; = e;, var(d;) Nvar(e;) = 0, as we require that variables from the
formula and from the trace do not clash (see last paragraph of Section 2.5.1).)

2. Repeatedly rewrite atoms ——¢ to ¢, and move — inside conjunctions and disjunctions
using DeMorgan distributive laws.

3. Move universal quantifiers (V) as far as possible to the right, and simplify universally
quantified formulas over (possibly negated) equalities and constraints, according to
the following rules:

Yo (1 Ada) = Yu.pr AVu.gpo
Vo.(p1 Vo) =  Vu.py VVu.dg if v is not free in ¢
or v is not free in ¢
Yv.p = ¢ ifvisnotfreein ¢

Vo.(v: K) = false(where K is aterm set)
Yo.—(v:K) = false (where K is a term set)
Yo.—~(v=t) = false

Yo.(v=t) = false

(In the last two rules, t # v since we require that var(v) = {v} Nwvar(t) = (.)

It can be shown that the transformation T terminates and is confluent, given a finite
trace, although we do not prove that here. The last step (3) removes cases which are known
not to hold (their correctness is proven in Lemma 2.5.12). Transformation T provides the
necessary input to the decision algorithm D of the next section, to decide validity of the
original formula.

We call an EF formula existential if it is of the form Jv; . .. Jv,,.¢p, and ¢ does not contain
any quantifiers (V nor J). In addition, we say that an EF formula ¢ is negation ground if every
occurrence of a negated constraint —(m : T') in ¢ satisfies that m is ground (we will need
this requirement to be able to decide negated constraints, see Section 2.4).

We now define the subset ® of PS-LTL over which we are going to decide symbolic
validity:

Definition 2.5.11. ® is the set of well-behaving EF formulas:
®2 { ¢ | ¢ closed and T (¢, tr,IK) is existential and negation ground for all tr, 1K }
® is expressive enough for several interesting security properties. In particular, every

property ¢ considered in Section 2.5.2 satisfies A, € ®. Examples of ¢ that are not well-
behaving are:
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o ¢ = Va.Jy.(run(z) A run(y)), since for try = ((run(z))) we have
T(¢p1,tr1,IK) =Vo.Jy.(z = 2) A (y = x), and

o ¢ = JxVy.(run(x,y) V run(y, z)), since for trace tro = ((run(z,w))) we have
that T(¢a,tre, IK) = JzVy.((x =z Ay =w)V (y = z Az = w)) for any IK.

The following lemma states that the translation T is correct, i.e. that it preserves the
semantics of PS-LTL w.r.t. semantics of EF.

Lemma 2.5.12. Let ¢ be a closed PS-LTL formula, tr be a trace and IK be an initial
intruder knowledge, and let o be a ground substitution such that var(tr) C dom(o). Then

(tro,IK) = ¢ iff o E' T(¢,tr,IK).
Proof. See Appendix A.1. O

Second Stage: Deciding Validity

Given a well-behaving EF formula 7 = Jv; ... Jvu,.p, we transform ¢ into its disjunctive
normal form ¢ = \/;;, with 1p; = A, m;;. Given also a simple constraint set C'S, the
procedure D (7, C'S) we are about to define either fails and returns false or succeeds and
returns a substitution o that makes ¢ true. For simplicity, in the sequel we assume that each
1 contains just one positive equality L; = R; (where L; and R; denote the left and right
term in the equality, respectively), one negated equality =(L} = R}') (where L} and R}
denote the left and right term in the negated equality, respectively), one positive constraint
m; : K; and one negated constraint ﬁ(m; K ;) The generalization to the case with several
atomic formulas and with (possibly negated) true and false atoms is straightforward.

Procedure 2.5.13. Let ¢ = \/; ¢, withp; = (Lj = R;) A ~(L] = R}) A (my + Kj) A
ﬁ(m; : K;) Let C'S be a simple constraint set. Procedure D succeeds if all the following
steps succeed, in which case it returns o = pppoy where p is given by Step 2, py, is given by
Step 3 and o is the substitution described in Section 2.4.

1. Pick a disjunct 1; while possible, otherwise exit and return false.

2. Solve Positive Equality: Take a relevant most general unifier p of L; and R; such that
dom(p) C var(L;) Uvar(R;), i.e. Ljp = R;p (If no mgu exists, go back to Step 1).

3. Solve Positive Constraint: Apply P to (CSU{m; : K;})p. Let p1, ..., p; be the partial
solutions.

4. Pick py, k € [1...1], while possible, otherwise go back to Step 1.

5. Solve Negated Constraint: Apply P to (CSU{m; : K;, m} : K;'})pproy (where oy
is the substitution given in Section 2.4). If it is solvable, go back to Step 4.

6. Solve Negated Equality: Check that L} pprov and R} pproy differ syntactically.

Step 2 tries to solve the positive equality, finding a suitable unifier p. (We need a unifier
and not a matching for the general case of many equalities). In case p is not found, then the
disjunct does not hold , so we try a different one going back to Step 1. Similarly, Step 3 solves
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the positive constraint. Step 5 checks that both p, pi, and oy cause the negated constraint to
hold (this is based on Theorem 2.4.4). Finally, Step 6 checks that the negated equalities hold.
Since we consider (i) relevant unifiers for Step 2, of which there are only finitely many, (ii) P
only outputs a finite number of solutions for Step 3 and 5, and (iii) we only need to perform a
syntactic check for Step 6, then we can deduce that procedure D terminates. The correctness
of D is more challenging to establish.

Lemma 2.5.14. Let ¢ be a closed PS-LTL formula, and (Sc,IK,CS, tr) a state from Proce-
dure 2.3.4. Assume that 7 = T(¢, tr,IK) is a well-behaving EF formula, m = Jv; ... Jv, .4

with ) = \/;b; and ¢ = \; ;. Then:

1. D(¢,CS) succeeds and returns a substitution o implies that o =" w, with tro valid
w.rt. IK; and

2. o E' 7, withtro valid w.r.t. IK implies that there exists a substitution v s.t. D(¢, C'S)
succeeds and returns .

Proof. See Appendix A.1. O

Now we are ready to formulate the main result of this section, which states that applying
the transformation T of Definition 2.5.10 and D defined in Procedure 2.5.13 is both sound
and complete.

Theorem 2.5.15. Let Scy be a system scenario, IK be an initial intruder knowledge, ¢
be a closed PS-LTL formula representing a security property, and let Ay = —¢. Let
(Se,IK,CS,tr) be a state from Procedure 2.3.4. Assume m = T(Agy,tr,IK) is well-
behaving and in disjunctive normal form, m = Jvy ... Jv,. \/j Wy, with ; = N\, 7j. Then

D(n, CS) fails iff (tr,IK) = ¢.

Proof. D(m,CS) fails iff, by Lemma 2.5.14, Vo : ¢ [’ T(Ay, tr,1K). By Lemma 2.5.12,
(tro,IK) = Ag. By definition, this is equivalent to (tro,IK) = ¢. So, we obtained that
Vo : (tro,IK) |= ¢, which by Definition 2.5.7 of symbolic validity is {¢tr, IK) | ¢. O

Integrating PS-LTL to Constraint Solving We integrate the checking of a closed PS-
LTL formula ¢ (representing a security property) into the constraint-based protocol analysis
approach described in Procedure 2.3.4. We need to first consider also status events (besides
send and receive events). This can be handled easily since status events behave similarly
to send events, so we only need to modify slightly step 1.(1a) of Procedure 2.3.4 (see Sec-
tion 2.8). The next step in the integration of PS-LTL consists in defining the appropriate
termination condition.

Definition 2.5.16. Given a state (Sc,IK,CS,tr), we define TCy((Sc,IK,CS,tr)) to be
true when D (7, CS) = true, for 1 = T(—¢, tr,IK) well-behaving.

The termination condition essentially checks whether ¢r in the current execution state can
be instantiated to provide a solution of —¢, that is, to falsify ¢: by Theorem 2.5.15, we know
that D(T'(—¢, tr, 1K), C'S) holds iff (tr, IK) [~ ¢. In that case, the procedure terminates and
outputs the trace tr that shows an attack. Otherwise, the procedure proceeds until an attack
or no attack is found. Since T and D terminate, and Procedure 2.3.4 terminates, checking
TCy(-) as given in Definition 2.5.16 also terminates.
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Implementation Procedure 2.5.13 and translation of Procedure 2.5.10 have been imple-
mented in Prolog, and attached to the implementation of Procedure 2.3.4. See [7] for an
online demo.

2.6 Adding a Check Event

Consider again the basic Procedure 2.3.4 (without PS-LTL). Principals are allowed to per-
form only send and receive operations, that is communication events. In this section we show
one example in which this is not enough when specifying security protocols, and we need an
extra event. Consider now Protocol 2.5 (inspired by Zhou-Gollman [168]).

Message 1. a—b: (l,c)

Message 2. b — a: sigpw)(c)
Message 3.  a — b: (sigyi(a)(k), k)
Message 4. b — a: sigpum)(l,c, k)

Protocol 2.5: Derived Zhou-Gollman protocol

This protocol aims at exchanging some message m in a fair manner, where b gets m iff a
gets evidence that b agreed to receive m (here we do not pursue verifying fair exchange, but
merely illustrate the need of an extra operation to be able to specify this kind of protocols
appropriately).

In Message 1, a starts the session by sending to b the hash [ = h(m) and a ciphered
message ¢ = {m}. At this point b cannot check that indeed ! is the hash of some message
m nor c is the encryption of m, since b does not have k. This is intended: when b provides
its signature, a will provide the decryption key k. Thus, b replies with his signature of ¢ in
Message 2. In Message 3, a sends the signed symmetric key k to b (we need to send k also
in plain since our signature operator is not invertible by the intruder). Now, and not before,
b can decrypt ¢ and check that [ = h(m). If the check does not succeed then b stops the
session, otherwise he continues by sending Message 4.

A Vulnerability The above protocol presents the following vulnerability: the attacker can
impersonate an honest principal (a, the initiator), and convince b that he is communicating
with a (so that b will believe its exchanging m with a while in reality a is not doing so). The
attack comes to light by instantiating the protocol twice (sessions « and (3) as follows:

Message a.1. e, — b: (h(m),{m})

Message a.2. b — eq @ Sigprm)({m}x)
Message 8.1. e —a: (X, k)

Message 3.2.  a — e: Sigpi(a) (k)

Message a.3. e, — b: (8igp(a)(k), k)
Message 4. b — eq @ sigprp)(R(m), {m}r, k)

First the intruder starts to impersonate a in Message «.1 (e is the intruder impersonating
the honest principal a). He sends [ = h(m) and ¢ = {m}, for some m and k. b then
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replies signing of {m},. Now the intruder must provide the message sig,(q)(k). For this, he
initiates a new session /3 with a, and composes a new message with anything as [, represented
as X (it does not matter what value it takes) but with &k as ¢ (Message 3.1). Then a replies
by signing k, and this is exactly what the intruder needs (Message (3.2). He just creates a
new message concatenating this message and k, and sends it to b (Message «.3). b receives
the message, performs successfully the check and finishes his session by sending the last
message a.4. Note also that the 3 session is partial.

The check of I = h(m) is difficult to implement using just communication events, since
there is no way to equate | with h(m). We can try to input directly at Message 1, h(m)
instead of [ and {m}, instead of ¢, as shown in Protocol 2.6.

Message 1. a — b: (h(m), {m})

Message 2. b — a: sigprp) ({m}r)

Message 3. a — b: (sigpr(a)(k), k)

Message 4. b — a: sigprp)((h(m), {m}x, k))

Protocol 2.6: Derived Zhou-Gollman protocol without ¢ nor [

However, even though Protocol 2.6 seems equivalent to Protocol 2.5, it is not so: here b
can find out already at step 1 if | does not comply with the definition (thus not continuing its
execution), while in reality (and in the original definition) this can happen only after step 3.
In fact, Protocol 2.6 is not vulnerable against the above attack.

Explicit Checks To implement the protocol correctly, we need to introduce a new event,
the check. A check event has the syntax check(t; = t2), where t1 and ¢ are terms.

By using our new event we can now correctly specify the responder role of Protocol 2.5:
resp(A,B,M,L,C,K) = ((B:(L,C)<A) (B: sigyn)(C)>A4)
(B : (sigpra)(K), K) < A)
check(L = h(M)) check(C = {M}k)
<B : Sigpk(B)(L, C, K) > A) >
Semantics of the check event are straightforward, by using unifiers. Procedure 2.3.4 is
extended as follows:

Procedure 2.6.1. Just like Procedure 2.3.4, but add another case for ev:

1.(c). If ev is a check event, ev = check(t1,tz), let 0 be its unifier, i.e. 110 = t20. Apply
procedure P to CS6, obtaining solution CS" ,~'. Let vy be 0~'.

Valid traces need also be extended, by simply letting a ground trace be valid if for each
i € [0, length(tr) — 1], last(tr;41) = check(ty, t2) implies that t1 = ¢5.

This new Procedure 2.6.1 can be seen to produce valid traces as defined above, thus
obtaining a result similar to Proposition 2.3.6. We do not pursue that direction here (see the
Related Work for the work [79] where a similar operation is studied).
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2.7 Guessing Attacks

Security protocols that use weak passwords (e.g. human chosen) can be subject to guess-
ing attacks [101] (also known as dictionary attacks). Guessing attacks exist in two flavours:
online and offline. In online guessing attacks the intruder is allowed to generate fake mes-
sages and to supply them to the honest principals, for instance for checking whether a certain
guess is correct. In offline guessing attacks, on the other hand, the intruder first gathers some
knowledge K from the protocol execution, and then proceeds offline to perform a password
search.
Consider the simple exchange between a and b shown in Protocol 2.7.

Message 1. a — b: (a,na)
Message2. b — a: {na}pab

Protocol 2.7: Simple exchange protocol

There, na is a’s nonce, pab is a shared weak password between a and b. After an ex-
ecution of Protocol 2.7, the attacker (who has eavesdropped all the traffic) has gathered a
knowledge set K = {(a,na),{na}yq}. With this knowledge, the intruder can mount an
offline guessing attack on pab, using brute force by proceeding as follows (shown in pseu-
docode):

Procedure 2.7.1. Offline Guessing Attack over Protocol 2.7:
1. obtain na by splitting (a,na)
2. REPEAT
3. Generate a guess p (possibly using a dictionary)
4. Let na’ be the result of decrypting {na} pqp using p
5. UNTIL na’' matches na

In this procedure, the gathered knowledge K = {(a,na), {na}pq} allows the intruder
to check whether a given guess of pab is correct. In this case we say that pab is guessable wrt
K. Intuitively, a password p is guessable in K if it is possible to infer a term v (the verifier)
from K U {p} in two different ways, along with the condition that p plays a crucial role in at
least one of these ways of deriving v. In our example, the verifier was na, which is derivable
from {na}pqs using the guess and from (a, na) by projection.

Note that we assume that decryption always succeeds, returning a value. Some novel
cryptosystems actually reject a ciphertext when it is intended to be decrypted with the wrong
key, which actually simplifies a guessing attack (this assumption is adopted in the definition
of guessing attacks given by Abadi and Warinschi [28], see the Related Work).

2.7.1 An Intuitive Definition

Lowe analyzes protocols for guessing attacks in [135]. His definition is:
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A guessing attack consists of the attacker guessing a value g, and then verify-
ing that guess in some way. The verification will be by the intruder using g to
produce a value v, which we call the verifier; the verifier will demonstrate that
the guess was correct, i.e. an incorrect guess would not have led to this value.
This verification can take a number of different forms: (1) the attacker knew v
initially, or has seen v during the protocol run; (2) the attacker produced v in
two different ways; or (3) v is an asymmetric key, and the attacker’s knows the
inverse of v from somewhere.

Let us leave (3) aside for the moment. We can combine (1) and (2) as follows:

The attacker produced v in two ways, and at least one of these two ways was not possible
before using the guess.

Now, whether an attacker can produce v in two different ways can be determined by sim-
ply masking that occurrence of v with some fresh constant (say v’) and see if he can produce
v and v" again. This observation leads to the following first definition of guessing attacks.

Definition 2.7.2. Let T be a ground term set, and let g be a ground term denoting a guess.
Also, let v be a subterm of a term in T, and let v’ be a fresh constant not occurring in T.

We say that g is guessable w.rt. T' if there exists an occurrence of v s.t. the following
conditions hold (where T" is the set of terms obtained by replacing the particular occurrence
of vinT withv'):

1. ve F(T'U{g}) andv' € F(T' U{g}); and
2. v g F(T") orv' & F(T").
In this case, v is called the verifier of g. (Recall that F(T) is defined in Definition 2.2.1.)

Intuitively, by replacing v with a fresh constant v’ in 7' we obtain a test set term 7", where
if we can derive both v" and v in T”, then the original v must have been possible to derive
in two different ways in 7". The second condition simply checks that these two ways are not
trivially derivable before the guess of g.

Example 2.7.3. We illustrate Definition 2.7.2 on some examples.

o Let T = {na,{na}pa}. Let g be pab, and pick the leftmost occurrence of na as the
verifier (v). Then, T' = {v', {na}pa}. It is straightforward to check that v' € F(1"),
na &€ F(T') (satisfying condition 2 of Definition 1), and v' € F(T' U {g}) and
na € F(T'U{g}) (satisfying condition 1 of Definition 2.7.2). Hence, that occurrence
of na is a verifier for g and there is a guessing attack.

o Let T = {{na}pep, {(na,nb)}pan}. Again make g = pab and v = na (in {na}pqe).
So, T" = {{v'}pav, {(na,nb) } pas }. Both na and v’ are not derivable from T' (satisfy-
ing condition 2), while they are both derivable from T' U {g} (satisfying condition 1).
Thus, that occurrence of na is a verifier for g and there is an attack.

o Let T = {{na}; ), {na}pas, pk(b)}. Let g = pab, and pick v = {na} ;. Then,

T = {v',{na}pa, pk(b)}. Now, v' € F(T'), {na},rnewy & F(I") (satisfying condi-
tion 2), and v' € F(T" U {g}) and {na} ., € F(T" U{g}) (satisfying condition 1).
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Hence, {na};k(b) is a verifier for g, and there is a guessing attack. However, consider
v =na (in{na}pew) v € F(T'U{g}) but v & F(T'U{g}) (not satisfying condition
1). Hence, the particular v cannot be a verifier and it was a wrong choice.

The definition also implicitly includes another special case of Lowe, where the protocol
itself gives {g} to the attacker. In this case, we select v as g (inside the encryption). After
guessing, v and v’ can be obtained from {{v'},} U{g} (satisfying condition 1), but not before
guessing (satisfying condition 2).

The only case in Lowe’s definition not captured by our definition is his condition (3).
However, we argue that this is an implementation dependent attack, which can be handled
accordingly at such level. This is so since some terms are recognized by the attacker imme-
diately (e.g. English text), even if there is no double derivation. The public/private keys fall
in this category, that can be specified as part of the input of an implementation, and needs no
search for double derivation as we do here.

Finding guessing attacks in Constraint Solving Up to now we only considered a set
of terms 7" which is ground. In this section we merge the procedure with constraint solving,
thus allowing potential variables to occur in 7'. We extend Procedure 2.3.4 as follows.

Definition 2.7.4. Given a state s = (Sc,IK, CS, tr) from Procedure 2.3.4, we define the ter-
mination condition (see Section 2.3.1) for guessing attacks, TCy(s), to hold if the following
steps succeed:

e Pick a ground subterm v in K (tr). Let K be the result of replacing an occurrence of
v in K(tr) with a fresh constant v', not occurring in K (tr) nor in CS.

e Applying P 1o CS U {v : KU{g} UIK,v' : K U{g} UIK} succeeds with partial
solution o and

o P fuails either on (CSU{v: KUIK})ooy oron (CSU{v' : KUIK }ooy.
This definition is appropriate, as shown in the next proposition:

Proposition 2.7.5. Let s = (Sc, 1K, CS, tr) be a state in Procedure 2.3.4, let g be a ground
term representing a weak password, and let TCy(s) be the termination condition as defined
in Definition 2.7.4 above. Suppose that TCy(s) holds. Then there exists vy s.t. g is verifiable
w.r.t. K(tr)y UIK, as defined in Definition 2.7.2.

Proof. Lety be ooy as given in Definition 2.7.4. By soundness in Theorem 2.2.15 since o is
a partial solution, we obtain that C'Sc is solvable with solution oy . Hence, v € F(Kooy U
{g} UIK) and v' € F(Kooy U {g} UIK), obtaining Definition 2.7.2 (1). To obtain (2),
we use Corollary 2.4.2 to deduce that either v ¢ F(Kooy UIK) orv' ¢ F(Kooy UIK)
(since v and v’ are ground by assumption). O

Note that although this proposition establishes soundness for the procedure given in Def-
inition 2.7.4, in principle we could use Theorem 2.4.4 to use it to establish completeness.
However we cannot apply the theorem as it is, since there may be non ground verifiers v of
g, which we cannot decide since our negated constraint solving strategy currently only works
for ground cases (see Section 2.4).
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Type-flaw guessing attacks Some techniques to prevent attacks involving type-flaws
and multiple protocols may actually facilitate a guessing attack. In [110], Heather et al. pro-
vide a method to prevent type-flaw attacks, by tagging the message fields with their intended
types. However, type-tagging should not be implemented when the protocols are using poor
passwords. To see why, consider again Message 2 of Protocol 2.7, {na} yq». Now, an attacker
has to decrypt it with a guess, obtain na in another way and compare to verify the guess. But
if the message is typed, like {nonce, na}pq, after decryption with the guess, presence of
the tag ‘nonce’ would itself verify the guess. He does not even need to know na!> How-
ever, in the absence of any mechanisms to detect type-flaws, protocols may be vulnerable to
type-flaw guessing attacks. Consider Protocol 2.8.

Message 1. a — b: {{k};k(b), {{k};k(b)}k}pab
Message 2. b — a: {nb, {ka}k }pab
Message 3. a — b: {nb},

Protocol 2.8: Artificial Protocol for Type-flaw Guessing Attacks

Protocol 2.8 has an attack involving a type-flaw. During the on-line phase of the attack,
the attacker performs the following communication with a (we write e, when the attacker
impersonates honest principal x):

Message 1. a — ey : {{k};k(b)’ {{k}ﬁc(b)}k}pab
Message 2. e, — a : {{k};/;(b)’ {{k}ﬁc(b)}’“}p“b
Message 3. a — e : {{k}];;(b)}{k};);(b)

In message 2, the attacker replays message 1 back to a. Now the attacker moves to the off-
line phase. The attacker guesses pab, decrypts the first message with the guess, splits it, and
takes the first part ({k};’c(b)) out of it. He can then decrypt the third message with this to
obtain it {k}_; (») gain, thereby verifying the guess.

Limitations of Definition 2.7.2.

Non- atomic keys. When considering non-atomic keys in encryption Definition 2.7.2 is not
satisfactory. Consider e.g. T' = {{({k}x, {k}{r},)}pab}- A guess of pab is verified,
by decrypting the only message in 7', obtaining {k}, and {k} s, , then getting k by
decrypting the latter using the former and finally then decrypting {k}; with k, and
noticing a match of £, thus making k the verifier. Of course, this example is contrived
and artificial, but it shows that sometimes the replacement of some subterm of 7" with
a fresh v’ disallows some derivations.

Protocols replaying material. Some protocols replicate material which may lead Defini-
tion 2.7.2 to find a ’fake’ attack. For example, consider a protocol that receives a value
{n}q and returns ({n}y,{n},). Then we would let v be n, replace n by v’, and obtain

SThis is unrealistic if nonce is short, as the change of getting it is high even if the guess is wrong. However, if
we assume the attacker can gather many instances of the message, i.e. {nonce, 160} pab, ..., {nonce, nan}pas.
then it is a valid attack.
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an attack since both v and v’ are derivable from ({v}y, {v'},) and g. However, any
guess of ¢’ of g, even if ¢’ # g, would decrypt {v}, and {v'}, to the same value,
simply because decryption is deterministic®. Hence, such protocols should be avoided
when analysing guessing attacks with Definition 2.7.2.

2.8 Putting it All Together

In Figure 2.2 we show how the techniques developed in this chapter are integrated. On the left
hand side we see Procedure 2.3.4, which maintains a state s = (S¢, IK, C'S, tr) consisting of
a scenario Sc, a constraint set C'S, an initial intruder knowledge /K, and an execution trace
(possibly symbolic) tr.

The termination condition (Section 2.3.1) predicate specifies when state S of Proce-
dure 2.3.4 is insecure (i.e. there is an attack), and as such we can terminate execution and
report an attack (with leading trace ¢r). Each extension is pure, since specifies only its own
particular termination condition, as shown in the boxes on the right of Figure 2.2:

TC4(s) The basic way of specifying termination conditions is shown by requiring some
roles A to terminate their execution. This is expressed as predicate T'C'4 (s), in the first
box (upper right of Figure 2.2).

TCy4(s) Another way to specify a termination property is by specifying a security property
¢ in the language PS-LTL. We then have termination condition T'Cy(s), as given by
Procedure 2.5.16 (middle right in Figure 2.2).

TCy(s) Guessing attacks over a weak key g (e.g. a password chosen by a human) by set-
ting a termination condition T'Cy(s) to be a predicate implementing Procedure 2.7.4
(bottom right in Figure 2.2).

The complete procedure is then:

Procedure 2.8.1. As inputs we take a system scenario Sc, an initial intruder knowledge 1K
and one of the following:

e A set A C Scof roles required to terminate indicating that an attack has happened; in
this case we let the termination condition TC(-) = TCy(-). TCa({Sc,IK,CS,tr)),
holds when for every role v € Sc’ with r # (), r is not a suffix of any instance of some
role v’ € A.

o APS-LTL formula ¢; in which case we let TC(-) = TCy(-). TCy((S¢, 1K, CS, tr))
is true when D (7, C'S) = true, for m = T(—¢, tr, IK) well-behaving; or

o A weak password g with which we are going to mount a guessing attack; in which
TC(-) = TCy(-). TCy(s), holds if the following steps succeed:

— Pick a ground subterm v in K (tr). Let K be the result of replacing an occurrence
of v in K (tr) with a fresh constant v', not occurring in K (tr) nor in C'S.

%We are grateful to S. Delaune and F. Jacquemard to point out the issue of Definition 2.7.2 w.r.t. protocols
replying materials in their paper [80].
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Figure 2.2: Putting it all together

- Applying Pto CSU{v : KU{g}UIK,v' : KU{g}UIK} succeeds with partial
solution o and

- P fails either on (CS U {v : K UIK})ooy oron (CSU{v': K UIK}ooy.

A run for scenario Scq with initial intruder knowledge K is a sequence of execution steps
starting from state (Sco, 1K, D, ()), where each step is performed as follows, and in which
the last state s of the sequence satisfies TC!(s).

A state is a 4-tuple (Sc,IK,CS,tr), where Sc is a system scenario, IK is the initial
intruder knowledge, C'S is a simple constraint set and tr is a (possibly non-ground) trace.
An execution step from state s = {Sc, 1K, CS,tr) to s’ = (Sc/, IK,CS', tr') is obtained by
performing the following:

1. Choose non-deterministically a non-empty role r € Sc. Let r = {(ev r'). Consider the
following cases for ev:

(a) If ev is a send communication or a status event, let v be the empty substitution
and C'S" be CS.

(b) If ev is a receive communication event, ie. ev = {a : m < b), check that the
intruder can generate m using the knowledge K (tr)UIK, by applying procedure
PtoCSU{m: (K(tr) UIK)}, obtaining a new simple constraint set C'S” and
a partial solution v (Note that there may be many possible C'S" and ).

(c) If ev is a check event’, ev = check(ty,t2), let 0 be its unifier; i.e. t10 = to0.
Apply procedure P to C S0, obtaining solution CS",~'. Let -y be 6+'.

7Caveat: explicit checks have not been considered in the developments of PS-LTL and guessing attacks, and
should only be used with the standard termination condition TC'4(+).
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2. Let S¢ := (Sc\ {r}U{r'})y, CS" .= CS" and tr' := ( try evy ).
This sets the step transition from states s to s', for s = (Sc,IK,CS,tr) and s =
(S, IK,CS' tr').

Procedure 2.8.1 completes the description of our extensions based on constraint solving
for analysing security protocols.

2.9 Case Studies

The techniques developed in this chapter have been used to analyze several case studies.
These case studies were developed by fellow PhD students (C.N. Chong, Y.W. Law and
G. Lenzini) at the University of Twente, and were found to benefit from a formal analysis
using our implementation of Procedure 2.3.4.

We report that each formal analysis was useful to establish relevant security properties,
and the collaborations resulted in published works [11, 12, 10]. Each case is described in
detail in the PhD theses of Chong [69], Lenzini [130] and Law [127]; here we provide a short
summary of each case.

As a contribution to the Telematica Instituut project LicenseScript [70], Chong [69]
presents a content (e.g. MP3 music or movies) protection scheme, which exploits tamper-
resistant cryptographic hardware. Content protection mechanisms are intended to enforce
the usage rights on the content, which are carried by a license (which may even include the
key that is used to unlock the protected content). In [69] a protocol is introduced to specify
the interactions between the hardware token, the application, and the license provider. Our
constraint solving procedure is used to verify the designed protocol. Indeed, several early
versions were debugged after flaws were found by the procedure. We analyze secrecy (e.g.
of fresh nonces as exchanged by the token and the genuine provider) and authentication (e.g.
to guarantee that a malicious application and provider cannot impersonate the genuine ones
and render the content even if unauthorized).

Lenzini [130] analyzes the security of the Trust and Security Management (TSM) proto-
col, an authentication protocol which is part of the Parlay/OSA Application Program Inter-
faces (APIs) [17], used by Italia Telecom and other telecommunication companies. Architec-
tures based on Parlay/OSA APIs allow third party service providers to develop new services
that can access, in a controlled and secure way, network capabilities offered by the network
operator. The role of the TSM protocol, run by network gateways, is to authenticate the client
applications trying to access and use the network capabilities on offer. We use our constraint
solving procedure to analyze the TSM protocol, and underline some problems. Regarding
secrecy, our analysis shows that some interfaces assumed to be secret can be found by the
intruder, thus exposing a vulnerability. Regarding authentication, our analysis highlights a
vulnerability regarding the negotiation of session parameters (e.g. encryption algorithm). In
TSM, such negotiation happens before the actual authentication (based upon CHAP-based
authentication, studied in [129]), and hence can be subverted by the intruder (e.g. by se-
lecting the weakest encryption algorithm). This is serious, since even if this negotiation is
protected with some key, our analysis shows possible replays (since the authentication phase
has not happened yet).

Finally, as a contribution to the European project Eyes [128], Law [127] presents a decen-
tralized key management architecture for wireless sensor networks, covering the aspects of
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key deployment, key refreshment and key establishment. Balance between security and en-
ergy consumption is achieved by partitioning a system into two interoperable security realms:
the supervised realm trades off simplicity and resources for higher security whereas the un-
supervised realm targets the other extreme of the trade off. Key deployment uses minimal
key storage while key refreshment is based on the well-studied scheme of Abdalla et al. [29].

The keying protocols involved use only symmetric cryptography and have all been ana-
lyzed with the constraint solving technique of this chapter, providing confidence of the pro-
tocols’ correctness. Many design issues (for example when one should include the sender’s
ID and/or the receiver’s ID in the messages of the protocols) were clarified by analyzing the
protocols using the constraint solving tool. Also, the tool helped to analyze large scenarios
which are beyond informal analysis. For example, the Inter-Supervised Cluster Keying pro-
tocol contains 9 steps in total, involving 4 parties: one supervisor S4 and one supervised
node A of one cluster, one supervisor Sp and one supervised node B of another cluster. The
purpose is to establish a shared key between A and B through the negotiation between S 4
and Sp. During the protocol design process, we found replay attacks due to the similarity
between two messages. We then modified one message accordingly, to avoid clashes, and
rerun our analysis, to finally verify the security of the protocol against any kind of replay
attacks.

2.10 Constraint Solving as a Teaching Tool

The implementation [7] of Procedure 2.3.4 has been used as a tool to teach security protocols
and their analysis, in two guest lectures given by the author to about one hundred under-
graduate students of the Distributed E-business Techniques (DEBT) course at University of
Twente, for three consecutive years (2003-2005).

The teaching experience helped the author to understand how to introduce protocol anal-
ysis to students. More importantly, we believe the experience has been positive for the stu-
dents, as a significant percentage appreciated and understood the potential of formal analysis.
For example, in the final exams for the course some questions were (almost always) success-
fully answered:

e In one question, the students were required to fix system scenarios (see Section 2.2.2)
to analyse different toy protocols (e.g. simplified versions of the Needham Schroeder
protocol). In particular, we required scenarios for testing secrecy and authentication.

e In another question, the students were required to explain why in a given scenario
different fields were instantiated (e.g. a nonce) while other variables were left unin-
stantiated (e.g. an unknown communication party) (see e.g. Example 2.2.8).

However, although the theoretical aspects of the constraint solving procedure were un-
derstood, not more than a handful of students actually used the tool to explore further (e.g.
to analyse other protocols or design their own).

We conclude this section by mentioning that our implementation is also one of the rec-
ommended protocols analysis tools [158] for the course “CS 395T - Design and Analysis of
Security Protocols” taught by Vitaly Shmatikov during Fall 2004 at University of Texas.
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2.11 Related Work

Related work for Constraint-based analysis of Security Protocols We first re-
visit references as given originally by Millen and Shmatikov [149]. The work of Millen and
Shmatikov [149] for verification of protocols (supporting the presence of encryption with
non-atomic keys) follows earlier work of Huima [112], for symbolic exploration of an infi-
nite state generated from a limited number of protocol participants. There, a term algebra
with reductions which cancel each other is used, although details about their completeness
result are missing.

Amadio, Lugiez and Vanackere [32] present a similar decision procedure to Millen and
Shmatikov, although only covering encryption with atomic keys (in contrast to non-atomic
keys as in [149]). Rusinowitch and Turuani [157] show the problem to be NP-complete
when using a free algebra and constructed keys. Algorithms for computing symbolic traces
are given by Boreale [59] and Fiore and Abadi [92]; the algorithms are technically involved,
with the latter proving completeness only for encryption with atomic keys.

The first efficiency improvement to Millen and Shmatikov’s procedure was first presented
by the authors [5], as shown in this chapter in Section 2. Our efficiency improvement is
dubbed common path optimization by Millen, due to fact that if an interleaving is unsolv-
able then other interleavings extending it, and then sharing a common initial path, are also
unsolvable and thus not need to be considered (see Observation 2.3.1). Another efficiency
optimization is presented by Basin, Mddersheim and Vigano [39]. Briefly, the idea there is
that new constraints are added only when they cover new ground state space, and thus never
include constraints which overlap with existing ones: hence the name constraint differentia-
tion. This technique is used in the OFMC back-end of the AVISPA tool, see below.

The strand space [162] is adopted both by [149] and our work [5]. Also using strand
spaces is Athena [159], although it only supports encryption with atomic keys. The fake
function F(-) is similar to Paulson’s [155] synth and analz functions to characterize the
attacker capabilities.

Several relaxations to the free algebra setting have been proposed. A reduction from con-
straint solving to systems of Diophantine equations is proposed by Millen and Shmatikov [150],
to deal with abelian groups, like products and Diffie-Hellman exponentiation. Chevalier
presents a constraint-solving decision procedure to deal with XOR [67]. The complexity of
deciding security with explicit destructors (one example are our ‘explicit checks’ as given
in Section 2.6; another is presented by Millen [148]) is studied by Delaune and Jacque-
mard [79], where an NP time procedure is presented.

Active research is carried within the scope of the AVISPA project [16], a framework in
which protocols can be specified in the HLPSL language, which is then translated to four dif-
ferent back-ends. Two of these back-ends are related to our constraint solving approach. The
on-the-fly model checker OFMC [37, 39] employs several symbolic techniques to explore the
state space in a demand-driven way. In particular, it implements the constraint differentiation
technique discussed above. Another back-end based on constraint solving is presented by
Chevalier and Vigneron [68], dubbed CL-AtSe, standing for Constraint-Logic-based Attack
Searcher. CL-AtSe applies constraint solving with simplification heuristics and redundancy
elimination techniques. The specification language of the AVISPA project allows the writing
of fixed goals (e.g. authentication), and thus it is less expressive than a full language as our
PS-LTL of Section 2.5. Regarding efficiency, while in original work [37] heuristics were
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needed, the later work [39] is much more developed and heuristics do not play a significant
role on efficiency anymore. The technique of lazy intruder stands for a Dolev Yao intruder
whose actions are generated ‘on-demand’. This work does not require encryption hiding as
[149] and hence our approach.

Recently, Drielsma and Modersheim [86] and Kihler and Kiisters [115] study contract
signing protocols (e.g. the ASW protocol [35] or the recently proposed protocol in [2]). In
the former work of Drielsma et al. studies the ASW protocol [35] restricting to reachability
properties, while the latter work of Kéhler and Kiisters addresses complete verification of
game-theoretic properties (e.g. fair exchange and non-repudiation [35, 121, 66]), by requiring
an initial stage of guessing the right attack interleaving, and then turning the problem to a
standard constraint solving problem.

Related Work for PS-LTL In previous work [4] the authors study local security proper-
ties. PS-LTL, as given in Section 2.5, provides more powerful operators (e.g. the Y and S
operator), which in turn allows the writing of more expressive security properties. Besides
that work, PS-LTL is inspired by the successful and elegant NPATRL logic [161]. As shown
in subsequent work [144], NPATRL is strictly less powerful than LTL; also in that paper it
is mentioned that the implementation of NPATRL to NRL Protocol Analyzer [141] presents
difficulties (e.g. the inability to mention several learn’s in the same formula, a restriction we
do not impose). Further examination is required to better compare NPATRL and our logic.

Our treatment of pure-past LTL is an adaptation of Havelund and Rosu [109]. We provide
a different semantics, tailored for security and constraint solving, but also include a different
definition for H, which we believe preserves better the faithfulness to standard LTL.

Finally, we use special flags like run and end, to later specify authentication properties as
correspondence assertions a la Gordon and Jeffrey [102] (which we also use in Chapter 5).

Related Work for guessing attacks The first definition of guessing attacks in a formal
setting is given by Lowe [135]. The definition basically aims at capturing the notion of
deriving some value in two ways.

However, Lowe’s definition is not constructive, and its proposed implementation is based
on a CSP model which is difficult to embed in other verification tools.

Recently, another approach to guessing attacks was presented in [78], were also the com-
plexity of guessing attacks was studied. This work was subsequently extended in [80], where
an algorithm for finding guessing attacks is described, for a finite number of participants.

Also recently, Abadi and Warinschi [28] relate ‘formal’ guessing attacks as defined in
Section 2.7 and in the above mentioned approaches with computational models, in a similar
vein to the work of Abadi and Rogaway [27] and the one presented in Chapter 6 of this thesis,
based on work from Laud and Corin [9]. The definition of guessing attacks as presented by
Abadi and Warinschi assumes probabilistic encryption, and also the fact that the decryption
algorithm accepts only valid ciphertexts and rejects otherwise. Also, pairing is considered
also verifiable, thus leading to a tight definition of guessing attacks. Our definitions as pre-
sented in Section 2.7 look for guessing attacks in a model with less verification means, and
thus requires a more involved treatment.



Section 2.12. Conclusions 51

2.12 Conclusions

Constraint solving is a simple and efficient technique for analyzing security protocols. Its
simplicity comes from the clean transformation of protocol runs to constraint sets, which de-
cision algorithm can be easily implemented. This simplicity is also evidenced by the compact
Prolog implementations of the analyzers. For example, the original implementation given by
Millen and Shmatikov [149] consists of just three pages of Prolog code. Our extensions do
not add much more code in their implementations. The technique is also efficient, thanks to
its lazy intruder strategy: variable instantiations only occur when required, and otherwise are
left uninstantiated. Constraints express neatly the knowledge of an intruder at a given point
in time, and its symbolic structure allows naturally to handle a potential infinite state.

Our optimization of Section 2.3 yields a more efficient system, which in turn allows the
verification of more complex protocols and scenarios. In turn, our extensions allow more
expressivity (e.g. the checks) and possibility to verify guessing attacks.

Furthermore, the approach can cope with realistic scenarios (e.g. industrial protocols), as
shown by our case studies analysis in Section 2.9.

Endowing constraint solving with a powerful language to specify properties PS-LTL
yields a practical and expressive system. PS-LTL is based on linear temporal logic (LTL)
with pure-past operators, and it allows to specify several security properties including authen-
tication [133, 75] (aliveness, weak agreement and non-injective agreement), secrecy (stan-
dard secrecy [56] and perfect forward secrecy [84]) and also data freshness. We present a
sound and complete decision procedure to check a fragment of PS-LTL against symbolic
traces, thus allowing to attach a PS-LTL interpreter into our protocol verification tool [5]
thereby providing a full verification system. There are many possible directions to extend
PS-LTL. One direction is to implement formula checking more efficiently: for example,
such implementation would not recompute the translation of PS-LTL to elementary formula
EF every time a property is checked, but maintain an internal data structure which can be op-
timized as the trace gets expanded, following the ideas of [109]. Another possible direction
would be to enlarge the subclass ® of PS-LTL thus obtaining a more expressive language
(eg. to cover stronger authentication notions like the ones in [75]). Also, it is interesting
to model more protocols and their properties, e.g. from the Clark and Jacob library [71] (we
already tested 18 protocols, including the four variants of the Andrew RPC protocol, and also
the Needham-Schroeder Public Key protocol, see [7]). Finally, further comparison to other
logics would be beneficial, such as NPATRL [161].






CHAPTER 3

A Timed Automata
Analysis Model

3.1 Introduction

In this chapter we develop an analysis model that explicitly takes into account time flowing
during the execution of a protocol. This is realistic since security protocols, like distributed
programs in general, are sensitive to the passage of time, hence affecting the security.

In general, in the design and implementation of a security protocol two aspects of timing
must be considered at some stage:

1. Time can influence the flow of messages. For instance, when a message does not
arrive in a timely fashion (i.e. timeouts), retransmissions or other actions have to be
considered.

2. Time information can be included within protocol messages (e.g. timestamps).

Consider first (1) above. In general, the influence of time on the flow of messages is
not usually considered by current state of the art methods for analysing security protocols.
However, we believe it to be crucial because (i) Even if the abstract protocol does not decide
what action to take at a particular moment of the execution (e.g. in the case of timeouts),
the actual implementation will eventually have to consider these issues anyway; (ii) The
efficiency and security of the implementation depends critically on these specific decisions;
and (iii) The timing of message flows in a protocol can be exploited by an attacker.

Now consider item (2) above. There, we believe that making judicious use of timing
information in a protocol has received attention but mostly in the limited setting of using
time stamps as opposed to nonces. However, time information can be used to influence
message flows as well, as we illustrate in Section 3.6.

In this chapter we cover several issues in the study of time in security protocols:

e Firstly, in Section 3.2 we study which kinds of timing issues, like timeouts and retrans-
missions, may arise in the study of security protocols. We then proceed in Section 3.3
to present a method for the design and analysis of security protocols that consider these
timing issues. The method is based on modelling security protocols using timed au-
tomata [30]. In support of the method we use UPPAAL [33] as a tool to simulate, debug
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Analysis Model for Security Protocols using Timed Automata

Dolev_Yao Environment Model Property Model

Reachability
properties

Timed Automata
in parallel

Automaton

Figure 3.1: Analysis model for security protocols with timed automata

and verify security protocols against classical safety goals like secrecy and authentica-
tion, in a real time scenario, using reachability properties. As examples, we analyse
a simplified version of the Needham Schroeder protocol [131] and the full Yahalom
protocol [71] in Section 3.4.

Our developed analysis model is illustrated in Figure 3.1. The general analysis model
of the Introduction (shown in Figure 1.1) is here instantiated using timed automata,
which enables timed analysis. In Figure 3.1, the attacker submodel implements a
timed Dolev Yao attacker, which can synchronize on communications with the other
participants’ automata, as detailed in Section 3.3.4. Also, the protocol participants are
represented as sequential timed automata. Then, both the attacker and participants are
composed in parallel to conform a system that can be analysed to establish reachability
properties. These properties state either secrecy (i.e. whether it is possible to reach a
state in which the attacker automaton knows a secret) or authentication (i.e. whether it
is possible to reach a state in which a participant automaton ends its execution believ-
ing wrongly it communicates to some participant).

Secondly, in Section 3.5, we categorize all the protocols from the Clark and Jacob
library and the SPORE library into different (more abstract) patterns of message flows
with timeouts. We then analyse each abstract pattern, independently of the actual
protocols, and establish their timing efficiency and security.

Finally, in Section 3.6 we illustrate some novel opportunities and difficulties that ap-
pear when considering time in the design and analysis of security protocols:

— In Section 3.6.1 we give an example protocol that accomplishes authentication by
exploiting the timeliness of messages. The protocol uses time in a conceptually
new way, by employing time challenges as a replacement for nonces.

— As a second example of a novel difficulty in Section 3.6.2, we describe how
timing attacks [88] can be applied to security protocols, by describing an attack
over a (careless) implementation of Abadi’s private authentication protocol [19].
Although these protocols can be modelled as timed automata, thus permitting
general verification, we leave the detailed verification as future work since for
this we need a model checker that is also probabilistic (like [77] or [123]): our
nondeterministic intruder of UPPAAL is too powerful, since it can always guess
correctly times and values even if the probability of guessing is negligible.
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3.2 Timeouts and Retransmissions

To illustrate how time influences the analysis of security protocols (even when it does not
explicitly use timing information), consider Protocol 3.1, written in the usual notation.

Message . A — B: Map
Message2. B — A: Mpa

Protocol 3.1: A schematic two message protocol

Here, first A sends message M 4 g to B, and later B sends message M p 4 to A. This high-
level view does not consider timing. To consider time, we first need to assume that both A and
B have timers. In this chapter, we do not require timers between parties to be synchronized
(see below for a discussion). The next step consists in distinguishing the different operations
that occur, with their respective times. In Step 1, it takes some time to create M 4 5. The other
operation that takes time is the actual sending of the message, i.e. the time it takes M4 to
travel from A to B. This transmission time is unbounded, since the message may be lost or
intercepted, and therefore A may need to timeout: After A sends M 4p, she starts a timer
that will timeout if Mp 4 (Step 2 of the above protocol) is not received after some waiting,
say ¢4 (Figure 3.2 (7)). Clearly, ¢ 4 should be greater than the time of creating Mp 4, plus the
average time of sending both M 45 and Mp 4. In general, A does not need to start waiting
for a response immediately after sending a message; for instance, A could hibernate (or start
doing another task) for some time s4 before beginning to expect the response Mp 4. This
results in a windowed timeout (Figure 3.2 (i¢)). Typically, the values for s4 and ¢4 depend
on implementation details. However, an implementation independent quantitative analysis
could already give an early indication of what attacks can be mounted for some values that
are no longer possible for others (e.g. a smaller ¢ 4 and a larger s 4).

Another issue that is not considered either is that the action to be taken when a timeout
occurs is sensitive. Typically, the implicit assumption is that the protocol should abort, as it is
the case in Figure 3.2 (7). This means that the protocol party that reaches the timeout deduces
that a fault has happened. However, aborting may not consist only of stopping execution
altogether. For example, if we consider protocols with several parties, we may wish that
when a party timeouts it also communicates its decision to abort to other, still active parties.
For instance, consider the following schematic protocol shown as Protocol 3.2.
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Message 1. A — B: Map A starts timer expecting Mp 4
Message2. A — S: Mug S starts session timer
Message3. B — A: Mpy

Protocol 3.2: A schematic protocol with timeouts

In Protocol 3.2, if A times out on Step 2, it could communicate the abort decision to S,
as shown in Figure 3.2 (4i1).

Aborting execution is not the only feasible action to perform after a timeout [124], and
in principle protocols could successfully execute when messages do not arrive at certain
moments. Even if we do assume that a fault occurred, aborting may not be the best choice:
sometimes, message retransmission is a better, more efficient and also more realistic option,
as depicted in Figure 3.2 (iv). In this case, a question which arises is whether to retransmit
the original message (M 4 for Figure 3.2 (iv)), or to recompute some parts before resending
the message. Here, the trade off is, as usual, between efficiency versus security.

Time information can also be included in the contents of M 45 and Mp 4. A typical value
to include is a timestamp, to prevent replay attacks. However, this requires secure clock
synchronization of A and B, which is expensive (see Mills [151] for a security protocol
to achieve this). In fact, this is the reason for which Bellovin et al. recommend to switch
to nonces in the Kerberos protocol [46]. Recently, the analysis of security protocols using
timestamps has received considerable attention from the research community (see Related
Work in Section 3.7). Therefore, in this chapter we do not pursue this direction.

3.3 A Method for Analysing Security Protocols

We use timed automata [30] to model protocol participants, and this has several advantages.
Firstly, our method requires the designer to provide a precise and relatively detailed protocol
specification, which helps to disambiguate the protocol behaviour. Secondly, timing values
like timeouts need to be set at each state, while retransmissions can be specified as transitions
to other protocol states.

Once modelled as automata, the protocol can be fed to the real time model checker UP-
PAAL, which allows the protocol to be simulated and verified. The simulation provides the
designer with a good insight of the inner workings of protocol, and already at this stage
specific timing values like timeouts can be tuned. Then the designer can proceed with ver-
ification of specific properties. As usual in model checking, verification of the protocol is
automatic for finite scenarios.

The resulting automata model is an informative and precise description of the security
protocol, and thus, it provides a practical way to strengthen implementations while keeping
efficiency in mind.

As a third and final step we propose to transfer timing information back to the high level
protocol description. This serves to highlight the role of time in the implementation, but also
(as we will demonstrate in Section 3.6.1), to make timing an integral aspect of the protocol
design.
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3.3.1 Timed Automata and UprPAAL

In this chapter, the timed automata of Alur and Dill are used for modelling [30]. In general,
timed automata models have an infinite state space. The region automaton construction, how-
ever, shows that this infinite state space can be mapped to an automaton with a finite number
of equivalence classes (regions) as states [30]. Finite-state model checking techniques can
then be applied to the reduced, finite region automaton. A number of model checkers for
timed automata is available, for instance, Kronos [167] and UPPAAL [33].

Parallel composition of automata is one of the main sources for expressiveness. This
operation allows to decompose complex behaviour, thus supporting transparent modelling.
When composing automata in parallel, we need also to provide some form of communication.
For the timed automata we use in this chapter, communication comes in form of hand-shake
synchronization. Two parallel automata can share a synchronization channel, i.e. both have a
transition labelled with a complementing channel name, e.g. synchronize! (and synchronize!)
in the example of Figure 3.3. These transitions may only be taken together, at the same
moment. In Figure 3.3 we see an example for a transition, labelled by a guard that has to be
true when the transition is taken, a synchronization channel, and a variable update.

Data transmission is typically modelled by a synchronization, where global variables are
updated. These global variables contain the data that are transmitted.

var_v>const_c
synchronise!
var_ w:=var_ w+l

O O

Figure 3.3: Example transition with guard, synchronization and update

Timed automata extend “classical” automata by the use of real-valued clock variables.
All clock variables increase with the same speed (derivation 1). For timed automata we make
a difference between a state and a location: a state is a location where all clocks have a fixed
value. In this sense a location symbolically represents an infinite set of states, for all the
different clock valuations. In Figure 3.4 an elementary fragment of timed automata is shown.
When the transition from location | to location Il takes place, the clock clock is reset to 0.
Location Il may only be left at time D, where D is a constant. The invariant clock<=D at
location |l enforces that the transition to lll has to be taken at time D.

! clock:=0 clock==D
@, -O O

clock<=D

Figure 3.4: Basic timed automaton fragment with a clock and a constant D



58 Chapter 3. A Timed Automata Analysis Model

send/recv Intruder send/recv
("~ =- -7 gennonce T
Initiator encrypt, Responder
yp! L 7P7 er )

e J decrypt
d t {nb Crypt hi generate nb
decrypt {0} (a3 Crvptographic L= FHIEER0, )

Figure 3.5: The UprAAL Model

Typically, the initial location of an automaton is denoted by a double circle. We also make
use of committed locations, which have the property that they have to be left immediately.
In most cases committed locations are used to model a sequence of actions with atomic
execution.

The properties verified by the model checker of UPPAAL are reachability properties, like
“there is a state where property p holds reachable from the initial state”, or the dual “in all
reachable states property p holds”. The latter is falsified if the model checker finds a state
that does not satisfy p. In this case a diagnostic trace from the initial state to the state that
does not satisfy p is produced by the model checker; it serves as counterexample.

We use this mechanism to find attacks. If we can characterize for example the fact that
some secret is not secret any more as a propositional property, and the model checker finds
a state where this property holds, the diagnostic trace describes a sequence of actions that
leads to this state, which gives precisely the attack.

Note that in this context verification comes very much in the guise of debugging. Finding
an attack requires an adequate problem model. Not finding an attack increases the confidence
in the modelled protocol, but does not exclude that attacks could be found in other models
for the same protocol.

3.3.2 Overview of the UprraalL Model

Let us now describe the general form of our model, in some detail. We model the protocol
participants (initiator, responder, etc) and the intruder as timed automata. Additionally, we
model cryptography as another automaton, the cryprographic device, which acts as an impar-
tial party that regulates the access to data. In Figure 3.5 we illustrate a scenario consisting of
one initiator and one responder. Here, boxes in bold represent our general intruder and the
cryptographic device, while dashed boxes represent the actual initiator and responder. These
participants use the cryptographic device to perform operations, but communicate through
the intruder (thus the intruder is identified with the network itself, obtaining a Dolev Yao like
intruder [85]). Our modelling is modular, and allows us to “plug in” different participants
(e.g., in the analysis of the Yahalom we add a server), while the bold boxes, i.e. the intruder
and the cryptographic device, are the core model.

While modelling security protocols as timed automata in UPPAAL, we will focus on
modelling the times required by the principals to encrypt and decrypt values (and generate
nonces), but not on the actual time that takes the sending (transmission times are assumed to
be unknown). Therefore, for our results to be useful, we assume that computing times (e.g.
cryptographic operations) are not negligible w.r.t. communication times, and thus choices for
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Figure 3.6: Timed automaton for a Cryptographic Device

timeout values depend both on communication and computing times.

3.3.3 Modelling Cryptography

The automaton for a cryptographic device is presented in Figure 3.6. This cryptographic
device performs nonce generation and public key cryptography. Later we also use a device
for symmetric cryptography, which can be obtained from the one in Figure 3.6 in a straight-
forward manner. In fact, our method allows different cryptographic devices to be plugged
in as needed (e.g. to add hashing). Basically, the device model is a shared table containing
pairs of plaintexts and keys. The first service of the cryptographic device is to provide fresh
nonces to the protocol participants (and also the intruder). The process of nonce generation
is started via synchronization on the gen_nonce channel. To model the new nonce creation,
the local variable gennonce is incremented with the constant seed plus the value of paraml
that includes the ID of the requesting participant (this ensures that initial generated nonces
differ from each other). The number of possible nonces is limited, by bounding gennonce by
constant MAX. After synchronization, a global result variable is updated with a generated
nonce, and the device finishes by synchronizing on the finish_nonce channel.

Encryption and decryption are modelled by two local arrays to the cryptographic device,
namely plain and key. When a party wants to encrypt some value d with key £, it synchro-
nizes with the device via the channel start_encrypt. If the device has still room in its tables, it
stores d in the plain array and k in the key array. As a result, it sets in the global variable
result the index in which d and k reside in the arrays. This index is the “ciphertext”. Upon
decryption, the ciphertext is provided to the cryptographic device, which then checks that the
provided key is correct: Since we model public-key encryption, the private key of a public
key k is simply modelled as a function f s.t. f(k) > MAX, so that private keys do not
clash with generated nonces and hence are never known by the attacker simply by guessing.
In this simple case we simply let f(k) = 10k, which since only one nonce is needed by the
participants in the toy protocol, gives enough room for the attacker to generate nonces.
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Figure 3.7: State constructions: nonce generation (above), encryption (middle) and
decryption (bottom)

State constructions Now that we have the cryptographic device, an honest principal
can use different state constructions to perform cryptographic operations. In Figure 3.7 we
show the different kinds of state constructions used in our models, which designers should
use as building blocks for the representation of protocol participants.

In the upper left of Figure 3.7 we see the building block for nonce generation. Here, a
protocol participant first resets the clock t, assigns its identity to variable param (used by
cryptographic device to provide different nonces to different participants) and then fires via
the gen_nonce channel. Then the participant enters a state in which it waits until the time of
nonce generation happens (time_gennonce), synchronizes via the finish_nonce channel
and obtains the return value via variable result. Encryption and decryption are analogous,
and only differ in that they use two parameters paraml and param?2 (for plaintext and key in
the former, and ciphertext and key in the latter).

3.3.4 Modelling the Adversary

The intruder, presented in Figure 3.8, works basically as a Dolev Yao intruder [85]. The
intruder models the network itself, by acting as an intermediary of communication between
the initiator and responder. This is modelled by letting the intruder synchronize on both
channels init_msg and resp_-msg. Upon synchronizing by receiving a message, the intruder
moves to state (SINT1), where it saves the message msg in its local variable data and resets
an index variable ¢ which bounds the total number of actions allowed to do before continuing
execution. Then, the intruder moves to state (SINT3), where it makes a nondeterministic
choice for an action. More precisely, it can decide to:

— Choose an identity in its local variable pk (State SINT4)

— Encrypt a value (State SINTS)

— Decrypt a value (State SINT6)

— Generate a nonce (State SINT7)

— Save variable data as message msg.

The intruder can then continue to perform these actions, choose to send a message or simply
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Figure 3.8: Schema for the timed automaton for the Intruder

block a message and continue the execution. Moreover, the intruder can also delay arbitrarily
a message, by waiting in state (SINT?2).

Note that the intruder is independent of the actual protocol under study, and hence it is
generic to analyze protocols using public key encryption (although this intruder is not able to
concatenate messages; we extend it in the next section).

3.4 Analysing Protocols

We first consider a simple protocol to illustrate our technique. Later, we move on to analyse
the more complex Yahalom protocol.

3.4.1 An Example Protocol

In this section we study and model in UPPAAL a simplified version of the Needham Schroeder
protocol, thoroughly studied in the literature (see e.g. [131]), shown as Protocol 3.3. Differ-
ently from the Needham Schroeder protocol whose goal is to achieve mutual authentication,
our simpler protocol aims at authenticating the initiator A to a responder B only (we do not
lose generality here, this is just a simplification to improve presentation).

Messagel. A— B: A
Message 2. B — A:{Np}xk,
Message 3. A — B:{Nplk,

Protocol 3.3: Simplified Needham Schroeder Exemplary protocol
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In the first message, the initiator A sends a message containing its identity to the respon-
der B. When B receives this message, it generates a nonce N g, encrypts it with the public
key K 4 of A and sends it back to A. Upon receipt, A decrypts this message with her private
key, obtains the nonce Np, reencrypts it with the public key Kz of B and sends it back to
B.

We can now move on to describe the actual initiator, responder and intruder. Both
the initiator and responder have local constants t ime_out, which represent their timeout
values. Also, the initiator, responder and intruder have local constants t ime_gennonce,
time_encrypt and time_decrypt that represent the time required to generate a nonce,
encrypt a value or decrypt a value, respectively for each principal.

The automata for the initiator and responder of our simple protocol presented above are
given in Figure 3.9 (the dashed transitions of the responder correspond to retransmissions,
discussed in Section 3.4.1). The initiator A starts her execution when activated via chan-
nel start (State SI0). The actual identity of the initiator role is set via the global variable
init_id (this and other role variables are chosen by the Init automaton, described be-
low). The initiator saves init_id as the first message (see protocol message 1). Then, the
initiator starts her protocol execution, by firing via the channel init_msg. After this, the ini-
tiator starts a clock ¢ and waits for a response, or until ¢ reaches t ime_out (State SI2). If the
timeout occurs, the protocol is aborted (a retransmission at this point would be equivalent to
restart the protocol). If a response is received before the timeout via the init_msg channel,
A tries to decrypt the received message msg. This takes time t ime_decrypt for the initia-
tor. After the decryption, the initiator reencrypts the obtained nonce (stored in result) and
finally sends the last message via the init_msg channel, setting to t rue its local boolean
variable finish.

The responder automaton B works similarly to the initiator. After receiving the start
signal, B waits for the message containing the claimed identity of A (State SR1). When re-
ceived, B saves the first message in the local variable claimed_id. After this, B generates
a nonce by contacting the cryptographic device. When ready (State SR3), B encrypts the
nonce with the value received in Message 1 (we identify identities with public keys). After
finishing the encryption (State SR4), the message is sent and B starts to wait for a response
(State SRS). If an answer comes before the timeout, B decrypts the message and checks that
the challenge is indeed the one B sent. If so, the local boolean variable finish is set to
true.

Verification

We wish to verify that our simple protocol indeed accomplishes authentication of A to B.
To this end, we will model check one session of the protocol containing one initiator, one
responder and one intruder. We use a special Init automaton that instantiates the initiator and
responder with identities (like A, B and I), and then starts the execution run by broadcasting
via the start channel. The init automaton is given in Figure 3.10.

The property we check, AUT, is shown in Table 1. AUT states that if we reach a state
in which the responder has finished executing but the claimed id (corresponding to the first
message of protocol) does not coincide with the actual identity of the initiator, the protocol
is flawed. Indeed, a state in which the initiator can “lie” and still force the responder to finish
means that authentication is violated. This is one of the possible forms of authentication
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Figure 3.9: Schemas of timed automata for the Initiator (top) and the Responder
(bottom)

init_id:= init_party:= resp_id:= resp_party:=
IntruderPk IntruderPk

init_id:= init_party:=

BobPk

init_id:= init_party:= resp_id:= resp_party:=
AlicePk AlicePk AlicePk AlicePk

Figure 3.10: Timed automaton for the Init automaton

AUT = E <> Responder.finish and
Responder.claimed_id! = resp_party
AUT, = E<> Initiator.finishand

Initiator.ticks < (Responder.time_encrypt
+Responder.time_gennonce + Server.time_encrypt * 2
+Server.time decrypt) — 1

Table 3.1: UprpAAL properties
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a.l A—-T A 1.I(B)— B : B

ﬂ.l I(A) — B (A 2.B — (B) . {NB}KB
,6.2 B—>I(A) :{NB}KA 3I(B)—>B : {NB}KB
a.2 I— A : {NB}KA

a.3 A—1T :{NB}KI

5.3 I(A) — B . {NB}KB

Table 3.2: A man-in-the-middle attack (left) and a replay attack (right)

failure. It is outside the scope of this chapter to illustrate different authentication flaws (see
Lowe [133] and Cremers et al. [75] for more on authentication notions).

Suppose we use a long timeout for B, i.e. satisfying:

B.time_out > Intruder.time_decrypt + Intruder.time_encrypt+
A.time_encrypt + A.time_decrypt

Here, UPPAAL finds a man-in-the-middle attack, presented on the left hand side of Ta-
ble 3.2. This attack is similar to Lowe’s attack [131], in which an attacker fools B into
thinking he is communicating with A, while in reality A only talks to I. Of course, we
could patch the protocol as Lowe did. But, in the context of time, it is interesting to model-
check the protocol with a tighter timeout, i.e. B.time_out < Intruder.time_decrypt +
Intruder.time_encrypt + A.time_encrypt + A.time_decrypt. When this constraint is
verified, the man-in-the-middle attack vanishes. Of course, we cannot pretend that B knows
the intruder’s times of encryption and decryption. Nevertheless, B can set B.time_out =
A.time_encrypt + A.time_decrypt, leaving no space for any interruption.

A second attack which is independent of timeouts (even if we set B.time_out = 0!)
was also found by UPPAAL; this time, the vulnerability is much simpler. We report it on the
right hand side of Table 3.2. This attack corresponds to a “reflection” replay attack [160].
This attack occurs when the intruder simply replies B’s message. The attacker fools B into
thinking its communicating with himself, while it is not true in reality. Interestingly, suppose
we change message 3 of the protocol to 3'. A — B : {Np + 1} k,. Now, the above replay
attack is prevented, since message 2 is not valid as message 3 anymore. Of course, a patch a
la Lowe for both also prevents both problems, as shown in Protocol 3.4.

Messagel. A— B: A
Message2. B — A:{B,Np}xk,
Message 3. A — B:{Np}gk,

Protocol 3.4: Patched Single Authentication Protocol

Having found confirmation that our framework is capable of finding untimed attacks (and
thus confirming known attacks), we proceed to provide a good baseline to study extended
security protocols with timing issues, like timeouts and retransmissions.
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Retransmissions

Consider again the automaton for the responder, given in Figure 3.9. In state SR4, the respon-
der sends the challenge { Np}x ,, and waits for a response in state SR5. If the response does
not arrive before the timeout, the responder simply aborts. Now we consider possible retrans-
missions that allow the protocol to recover and continue its execution. With timed automata,
retransmissions are easy to model by adding transition arrows from state SRS to previous
states of the automaton (the dashed lines in Figure 3.9); These transitions are guarded, allow-
ing to perform the action only when the timeout is reached (i.e., t >= time_out). A further
refinement not explored here would be to add counters so that the number of retransmissions
can be limited before aborting.

We consider two potential target states for the timeout of the Responder in SRS, namely
states SR3 and SR2. Choosing the former corresponds to retransmitting the exact same
message that was sent before, { N } i, . On the other hand, linking the retransmission arrow
to SR2 corresponds to recomputing the whole message, by creating a new nonce Ny and
sending { N5}k ,-

We implemented both strategies in our UPPAAL model. As can be expected, retransmit-
ting the exact message once has the effect of duplicating the timeout for B, and thus the
man-in-the-middle attack becomes possible even for tight timeout values. On the other hand,
recomputing the whole message preserves the security of the protocol, at a higher compu-
tational cost. This provides evidence that indeed these design decisions are important for
both security and efficiency, and a careful analysis can help to choose the best timeouts and
retransmissions for a practical implementation.

3.4.2 A Real Protocol

Having illustrated our approach with a simple example we now study a more realistic proto-
col, the Yahalom protocol [71], shown as Protocol 3.5. This protocol aims at authentication
of A and B as well as key distribution of A and B using a shared server .S with whom both
A and B share secret keys K 45 and Kpg.

Our choice is based on the fact that Yahalom is a complex and strong protocol, with no
known attacks over it (However, a modification proposed by Abadi et al. [65] has a known
type-flaw attack). Our aim is to study the protocol in more detail (and thus closer to an
implementation) with timing information.

Messagel. A — B:A /Ny

Message2. B — S :B,{Np,A,Natk,s

Message 3. S — A: {BaKAB7NAaNB}KASa {AyKABvNB}KBs
Message4. A_’B:{A7KAB7NB}KBS>{NB}KAB

Protocol 3.5: Yahalom protocol

Here we use symmetric encryption, and key K xy is shared between X and Y.

To model concatenation in an efficient way, we gathered several message components
into a 16 bit field, thus keeping the state space as small as possible. In our case, we assume
that nonces have 4 bits, principal id’s 2 bits and keys 4 bits. To access these values, we use
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bit-wise and with appropriate masks, and (left,right) bit shifts. Our intruder has also the
capability to do the shifts and mask, and we also removed the “public key” choice from the
intruder of Figure 3.8. We have modelled the protocol in UPPAAL (the initiator, responder,
server and intruder are shown in Figures 3.11 and 3.12).

As we did with the previous protocol, first we check whether authentication of A to
B could be falsified, using property AUT from Table 3.1. This property is not satisfied,
confirming that Yahalom is secure. Now we move to study time sensitive issues.

There are two places in which timeouts and retransmissions can occur in this protocol.
The first one is in Message 1: After A sends her message, she starts a timer waiting for
message 3. Now, suppose that a timeout occurs, and A wants to retransmit her message. We
can be confident that resending the same nonce N4 will not affect security, since in any case
it was already sent in the clear in the first time. However, an interesting timing issue arises
here. An answer that is received foo early by A could be suspicious, because some time
must pass while B talks to S. If A knows B’s and S’s encryption and decryption times, A
could even deliberately “hibernate” (e.g. to save energy) until the response is likely to arrive
(this models a windowed timeout, see Figure 3.2 (4i)). We model checked this property by
measuring the time after A sends her message, and a response arrive (we count ticks, the
dashed loop transition of the initiator in Figure 3.11). The specified property is AUT,,, shown
in Table 3.1. This property is not satisfied, confirming that there is no way that the initiator
can receive a valid answer before the time required by the responder and server to process
A’s request. In an implementation, it is reasonable for A to set a timeout like above, since
it is realistic to assume that A can know the responder and server’s times of encryption and
decryption.

The second timeout is set by B after sending his message at step 2. If a timeout occurs,
the retransmission decision is more delicate: It is not clear whether B should resend the
original message, should recompute Np or whether B should abort, since clearly /N4 cannot
be recomputed. Intuitively, Vg could be reused. We modelled in UPPAAL the retransmission
of the exact message (as the dashed transition of the responder in Figure 3.11). When we
model check again property AUT,, we obtain that it is still unreachable, confirming that in
that case an efficient retransmission of the same message 2 by B is secure.

However, by observing the messages flow, we know that if B timeouts then it is very
likely that A has also reached its timeout and aborted (see Figure 3.2 (iv)). This mainly
happens because since A is unsure whether B is alive or not, and thus A’s timeout needs to
be tight. If A knew that B is alive and waiting for an answer from S, then A could extend
its timeout. We then sketch a more efficient implementation in Figure 3.13, in which at
Message 2 B also sends a special subm message notifying A of the submission to S. Then
A can extend its timeout with more confidence (the second dashed line in Figure 3.13). In
the case subm is never received by A, she can send an abort message to B. Of course, in
this simple model the attacker can also send this messages, thus performing denial of service
attacks; in any case, our attacker is powerful enough to stop communication altogether.

In summary, for the Yahalom protocol we obtain that retransmitting for the responder is
secure, and also that the initiator can be implemented to efficiently “hibernate” a safe amount
of time before receiving a response.
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Figure 3.13: A more detailed implementation of Yahalom
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3.5 Taxonomy of Message Flows and Timeouts

The flow of messages of many protocols follow a small set of specific patterns. By explor-
ing the well known Clark Jacob library [71] of authentication protocols and the Security
Protocols Open Repository (SPORE) [15], we were able to categorize the protocols in four
categories, as shown in Figure 3.14. To each pattern, we add the corresponding timeouts, and
analyze their impacts on security and efficiency. For the original references of the protocols,
the interested reader may consult the Clark Jacob library [71] and the SPORE library [15].

Not shown in this categorization are non-interactive protocols which do not wait for mes-
sages and thus do not require timeouts. In this category fall the Wide Mouthed Frog protocol,
the CCITT X.509 simple pass protocol and the CAM protocol for mobile IP.

First, we discuss the simplest pattern in Figure 3.14 (4). This is a three-message exchange
with two participants. This pattern is the simplest and also the most secure one from timing
point of view, since timeouts can be set tight, due to the ping-pong nature of the exchanges.
To this pattern correspond both the example protocol of Section 3.4.1 and the one in Section
3.6.1, and also the protocols CCITT.509 three pass, the Shamir Rivest and Adleman Three-
Pass protocol, the ISO XXX Key Three-Pass (and their repeated protocols), the SmartRight
view-only protocol (from SPORE) and the Diffie-Hellman key exchange protocol. With a
fourth message from B to A in the same fashion we find the Andrew Secure RPC protocol.
Adding a third participant S, but still doing ping-pong exchanges, we can add the Needham
Schroeder symmetric key protocol and the Denning Sacco protocol.

Secondly, we identify three-party protocols, in which a server S also takes part in the
communication (Figure 3.14 (%)) but ping-pong exchanges are not anymore used. This pat-
tern is potentially unsafe and inefficient for A, since she has to wait until a long timeout as
elapsed after the first message before receiving an answer from S. This is due to the fact
that three messages have to be exchanged after A’s initial message. By consulting again the
Clark and Jacob library and the SPORE repository, we see that the Otway Rees protocol,
the Gong mutual authentication protocol, the Woo-Lam mutual authentication protocol, the
Carlsen protocol, and finally the Kehne Schoenwalder Langendorfer (KSL) protocol all fall
in this category. Adding ping-pong exchanges before and after the exchanges of Figure 3.14
we find the Needham Schroeder Public key protocol. Adding a ping-pong exchange before
Figure 3.14, and removing the last exchange gives us the SPLICE/AS protocol.

Thirdly, we see a pattern to which only the Kao Chow protocol belongs in Figure 3.14
(#i1). This pattern is however better than (i7), since shorter and fewer timeouts are used: A
needs to wait for the timeout corresponding to only two messages (instead of three as in (¢4)),
and B has to wait for only one timeout (comparing to two timeouts in (i7)).

Finally, in Figure 3.14 (iv) we see the last pattern. This pattern is worse than (ii¢) since B
needs to wait longer (for two messages instead of one in (4¢%)). However, it is unclear whether
it is better than (i7), which uses two timeouts of one message each: the actual efficiency and
security depends on the actual timeout values used in each case. This category is inhabited
by the Yahalom and Neuman Stubblebine protocols.

This taxonomy shows how authentication protocols can be categorized into a handful of
patterns. The efficiency and security that an implementation of a protocol will have depends
on which pattern the protocol follows, and thus it is useful to analyze the patterns in isolation
from the actual protocols.
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Figure 3.14: Typical message flows for authentication protocols

3.6 Beyond Model Checking

So far our method has been used for analysis purposes, i.e. to model, classify and debug
security protocols as a source of hints for the improvement of the protocol implementations.
We now explore some ideas to improve the protocols themselves, and also present the threat
of a more subtle attack, based only on timing.

3.6.1 Using Time as Information: Timed Challenges

Sometimes it can be useful to include other timed information than timestamps, even if the
clocks are not synchronized. Consider now Protocol 3.6, obtained by omitting the encryption
of the last message of the (patched) protocol of Section 3.4.1. Even though Np is now sent

Message 1. A — B: A
Message 2. B — A : {B,Np}k,
Message 3. A — B : Np

Protocol 3.6: Modified Protocol from Section 3.4.1

in the clear, this protocol still achieves authentication of A to B, although now the nonce
obviously cannot be regarded as a shared secret. Still, the intruder can prevent a successful
run of the protocol (e.g. by intercepting message 3), hence the protocol is as strong as it was
before in this respect.

Imagine now a situation in which there is a link from A to B in which data can be sent
very fast, but at a high cost per bit sent. For example, think that the high cost of sending infor-
mation comes from the fact that we have devices with a very limited amount of energy, like
wireless sensor networks for instance. Alternatively, in some networks, operators charge ac-
cording to quality of service, and many networks have asymmetric links (e.g. Cable modem
and ADSL).

Assume therefore that, sending Np in message 3 is expensive and not desirable. We
propose a solution based exclusively on using fime as information. Let 45 be the average
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time it takes for a message to be sent from A to B, and analogously d 4. Then consider the
“timed” variant of the above protocol, demonstrating how timing information is brought back
to the (abstract) protocol level (i.e. Step 3 of Section 3.3), shown as Protocol 3.7. In Message

Messagel. A— B: A
Message 2. B — A:{B,tg}k,
Message3. A — B: “ack” attimetp —dap — 6pa

Protocol 3.7: Single Acknowledgement Authentication Protocol using timed chal-
lenges

2, instead of a nonce, B generates some random time value tg > d 45 + 04, concatenates it
with B’s identity and encrypts the message with A’s public key. Then, B starts a timer ¢ and
sends the message. Upon reception, A extracts ¢, waits time tg — o — dp 4, and replies
the single bit message “ack”. When B receives this message, the timer is stopped and B
checks that ¢ is sufficiently close to tg; if so, A is authenticated to B. Of course, the amount
of noise in the time measurements influences what we mean by “sufficiently close” above.
Also, to be realistic, the length in bits of ¢ should be small enough, otherwise B would be
waiting too long; this would give an intruder the chance to guess ¢z, and answer the “ack”
at the appropriate time. However, we can strengthen the protocol as follows in Protocol 3.8.

Message 1. A—B:A
Message 2. B — A:{B,tp,,...,tB, } K,
Message 3. A — B: “ack” attime tp, —dap —0pa

Messagen +2. A — B: “ack” attimetp, —dap — 6pa

Protocol 3.8: Multi Acknowledgement Authentication Protocol using timed chal-
lenges

For example, if ¢p, is of length 4 bits, for ¢ € [1..n], then the total answer is n bits, in
comparison with an answer of 4n bits required in the nonce protocol.

Of course, sending several short messages can be worse than sending one long message,
in which case our protocol would not be so useful. In general, the value of n must be chosen
as small as possible, depending on the desired security and network latency. A fast network
allows us to reduce n and at the same time increment the length of ¢ 5,, for i € [1..n].

Intuitively, the sent times of the “ack’’s represent information, and the above protocols
exploit that. To the best of our knowledge, this is a novel usage of time in security protocols.

Application This protocol can be used to authenticate a whole chain of network packets,
as follows. Suppose A has a large sequence of n packets which must be streamed to B over a
network. For instance, these packets can represent an audio stream in the Internet. We want
to authenticate the audio stream, but we do not wish to spend lots of resources on doing this.
Lettp, € {0ap + 04,045 + dpa + C} for some constant C' and p; denote packet i, for
1 <4 < n. The new protocol is shown as Protocol 3.9.
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Message 1. A— B:An
Message 2. B — A:{B,tp,,...,tB, }K4
Message 3. A— B:pjattimets, —dap — 0pa

Messagen +2. A — B :p,attimetp, —dap —0pa

Protocol 3.9: Application Protocol using timed challenges

When tp, is 04 + dp 4, it is the delay introduced by A is zero, i.e. p; is sent right away.
However, when tp, is dap + dpa + C, the delay is C. To be as efficient as possible, C'
should be chosen to be the minimum amount of time that allows B to distinguish the delay
modulated by A.

In this protocol, only one bit is authenticated per packet. However, the larger the n is, the
more confidence we can obtain of A’s authentication.

Discussion In this protocol, we are in reality exploiting a well-known feature of channel
coding: a so-called timing covert channel. In such a channel, the transmitting party modulates
packets so that information can be passed even if its not allowed by the environment. Our
usage differs in three ways:

e Firstly, we use a mixed approach, in which some information is sent in the standard
channel, and other is sent in the timing channel.

e A second difference is more fundamental than the previous one. Our usage of timing
channel is purposely public, and there is no environment trying to stop the unauthorized
information flow. Timing is used only because of its practical advantages, namely low-
bandwidth.

e Finally, in our protocol both communicating parties do not initially trust on the other’s
identity, in principle: Indeed, ours is an authentication protocol.

3.6.2 Timing Leaks in an Implementation of the Private Authen-
tication Protocol

We now present a threat over implementation of security protocols with branching: the so
called timing attack. We illustrate this by showing an attack over a careless implementation
of Abadi’s Private Authentication (PAP) protocol [19] (The second protocol). It is worth-
while to mention that the protocol has been proved correct by Abadi and Fournet [94], in a
setting without time. We assume that each principal X has a set of communication parties
Sx, listing the principals with whom X can communicate. The aim of the protocol is to
allow an principal A to communicate privately with another principal B. Here “privately”
means that no third party should be able to infer the identities of the parties taking part in the
communication (i.e. A and B) (PAP Goal 1). Moreover, if A wants to communicate with B
but A ¢ Sp, the protocol should also conceal B’s identity (and presence) to A (PAP Goal
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1. A generates a nonce N 4. Then, A prepares a message M = {“hello”, Na, Ka} kg,
and broadcasts (“hello”, M).

2. When a principal C' receives message ( “hello”, M), it performs the following three
steps:

(a) C tries to decrypt M with its own private key. If the decryption fails, (which
implies that C' # B), then C creates a “decoy” message { N}k (creating a
random K, and keeping K ~! secret), broadcasts (“ack”, { N} k) and finish its
execution. If decryption succeeds, then C' = B (and so from now on we will
refer to C' as B). B then continues to the next step.

(b) B checks that A € Sg. If this fails, i.e. A ¢ Sp, then B creates a “decoy”
message { N } i, broadcasts (“ack”, { N} k) and finishes execution. Otherwise
B continues to the next step.

(c) Finally, B generates a fresh nonce N, and broadcasts the message
(“ack”, {“ack”, ]\fA7 NB, KB}KA)~

Protocol 3.10: Abadi’s Private Authentication protocol

2). A run of the protocol in which A wants to communicate with B proceeds as shown in
Protocol 3.10.

It is interesting to see the use of “decoy’ messages, to prevent attacks in which an intruder
I prepares a message M = {“hello”, N¢, K4}k, impersonating principal A. If decoy
messages were not present, then I would send (“hello”, M), and deduce whether A € Sp
by noticing a response from B. However, using decoys only helps to confuse an attacker
doing traffic analysis, and breaks down when considering a “timed” intruder, as we will
show in the next section.

An Attack Over an Implementation of the Private Authentication protocol

We show an attack in which I can find whether A € Sp. The attack is illustrated in Figure
3.15, where I is trying to attack A, B and C, which since I does not know their identities are
called X, Y and Z. First, suppose that I ¢ Sp (the attack for the case in which I € Sp is
analogous). First I needs to know how long, on average, it takes to B to compute each step
of the protocol as described above. To discover this I could prepare various messages:

1. Firstly, I sends a message (“hello”,{N}k), where K is not the public key of any
other participant. This would generate a number of decoy responses from the other
participants, which I can time (Step 1 in Figure 3.15, for times x, y and z).

2. Secondly, I sends a message (“hello”, {“hello”, N1, K1} k). Again, this generates
decoy responses from the other parties which I can time (Step 2 in the figure). How-
ever, if B is present, then one response will have longer time (i.e. we get times z, z and
y' with 3/’ longer than y), reflecting the successful decryption and check that I ¢ Sp
performed by B (Recall we assume that I ¢ Sg). Up to this point, I has information
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: NN}K)
X Y )M 7

I
xﬁ (“h@llO”, {leKA}KB>
X /Dy\\\ Z

Sa=(B )sp=14 1 Se=

Figure 3.15: The attack over a time-careless implementation of the PAP protocol,
where X, Y and Z are unknown identities by the intruder 1. A, B and C are real
identities, with corresponding S4, Sg and S¢ sets; z, y, v/, ¥ and z are timing values
(Dashed circles indicate the intruder’s knowledge of inner values)
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that allows him to infer B’s presence (hence the dashed circle in the figure); Thus,
this attack already violates goal 2 of Abadi’s requirements [19]: B should protect its
presence if a party X is willing to communicate with B but X & Sp (Step 2).

3. Finally, if B is present, then I sends message (“hello”, {“hello”, Ny, K4}k, ). This
would generate again the same decoy responses, except one that takes longer (Step 3
in the figure, for x, z and y” with 3" longer than y’). If this response takes the same
time as the above item, then I can deduce that A ¢ Sp. Otherwise, if the response
takes longer (reflecting the nonce generation N and encryption performed by B) then
I can deduce that A € Sp.

If I € Sp, then the second step above returns the longest time, and the third message
would take either less time or equal.

After recording this information, I has three time values ¢y, ¢; and ¢5. to corresponds to
the time in which B is not present; t; corresponds to the time in which B is present but its
communicating party X ¢ Sp. Finally, t, corresponds to the case in which B is present and
its communicating party X € Sp. With these values at hand, now an attacker can check if
A € Sp for an arbitrary A.

Timing in networks is often accurate but if the accuracy is too low, the intruder can repeat
the timings (i), (ii) and (iii) and perform statistical analysis to increase the probability of the
inferences to be correct [120]. We propose this as future work, when we have a probabilistic,
timed model checker at disposal.

3.7 Related Work

Many approaches focus on the study of protocols that use timestamps [82, 89, 133, 42, 104].
Recent work of Delzanno et al. [82] presents an automatic procedure to verify protocols
that use timestamps, like the Wide Mouthed Frog protocol. In their work, differently from
ours, a global clock is assumed, and timeouts and retransmissions are not discussed. Evans
and Schneider [89] present a framework for timed analysis. Differently from our (UPPAAL)
model checking, it is based on a semi-decision procedure with discrete time. In that work,
the usage of retransmissions is hinted at as future work, but not (yet) addressed. Lowe [133]
also analyses protocols with timing information; his work shares with us the model checking
approach, although Lowe’s approach is based on a discrete time model. A global clock is
also assumed, and timeouts nor retransmissions are addressed. Closer to ours is the work
of Gorrieri et al. [104], in which a real-time process algebra is presented for the analysis of
time-dependent properties. They focus on compositionality results, and no model checking is
presented. Gorrieri et al. also show how timeouts can be modelled, although retransmissions
are not discussed.

Regarding our timing attack upon Abadi’s protocol, Focardi et al [93] develop formal
models for Felten and Schneider’s web privacy timing attack [90]; their modelling activity
shares with our work the idea of using timed automata for analysis, although our attack
illustrates a timing attack over a “pure” security protocol.
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3.8 Conclusions

In this chapter we address some of the issues that need to be considered when including
time-related parameters in the engineering process of a security protocol.

Our first contribution is a method for the design and analysis of security protocols that
consider timing issues. We model security protocols using timed automata, and use UPPAAL
to simulate, debug and verify security protocols in a real time setting. To this end, we em-
ploy a general Dolev Yao style intruder (naturally encoded in UPPAAL), and we remark that
modelling the intruder as a timed automata implicitly extends its power to take into account
the time sensitivity. Our method allows us to specify security protocols in detail, with time-
outs and retransmissions. This increases the confidence in the analysis, since the modelled
protocols are closer to their implementations than the classical analysis (e.g. CASPER [133]
or the constraint-based methods of [149] and Chapter 2).

Secondly, by analyzing the protocols in the Clark and Jacob library and the SPORE li-
brary, we see that most protocols schemas (w.r.t. timeouts) fit into a small number of common
patterns. We analyse the efficiency and security of each of the patterns. Still, as possible
future work we would like to perform a full UPPAAL analysis of each of these literature
protocols (just as we do for Yahalom in Section 3.4.2).

Other novel and more real-life protocols which are sensitive to timing issues (e.g. besides
timeouts, use for instance puzzles) may benefit from our analysis, e.g. the Host-Identity-
Protocol (HIP), initially analysed by Aura et al. [36].

Our third contribution is an illustration of the implicit information carried by timing. The
mere act of sending a message at a specific moment in time, and not another, carries infor-
mation. We propose a novel security protocol that exploits this fact to achieve authentication.
The protocol replaces the standard nonces with timed challenges, which must be replied at
specific moments in time to be successful. Although it is a preliminary idea, it exposes clearly
the fact that security protocols can use and take advantage of time.

Finally we address threats specifically involving timing should also be considered; specif-
ically, timing attacks. We illustrate these attacks in the context of security protocols, where
branching allows an intruder to deduce information that is intended to be kept secret. Specifi-
cally, we mount an attack over an imperfect implementation of Abadi’s private authentication
protocol [19]. Solutions to avoid timing attacks in the implementations are usually expensive
(e.g. noise injection or branch equalization), and it is not our purpose to investigate them.
Here we merely lift the known problem of timing attacks, typically mounted against the
cryptosystem to obtain secrets keys, to security protocols in general where the information
leakage can be, in principle, anything.

One possible direction of future work is to consider a timed and probabilistic model
checker (in the lines of [77] or [123]), that would allow us to study the protocols of Section
6. Moreover, a probabilistic setting would allow us to model, more realistically, the network
latency. This, in turn, would provide us with a finer method to tune sensitive timing values.
Another possible direction for future research would be to implement a compiler from a
meta notation (similar to the standard notation, plus timing information) supporting symbolic
terms, to UPPAAL automata.



CHAPTER 4

A Process Algebraic
Analysis Model for
Guessing Attacks

4.1 Introduction

As we already illustrated in Section 2.7, password protocols can be subject to guessing
attacks. To analyze the security of protocols against these attacks, in that section we de-
scribe a procedure that searches for possible guessing attacks. The procedure is based on the
Dolev Yao attacker which assumes ideal encryption, as described in the Introduction.

However, when studying password protocols in particular, relaxing ideal encryption to
model closely the properties of the underlying encryption scheme is more realistic. This
is so since in practice these protocols are designed to be secure when instantiated with a
particular encryption scheme. This makes the security against dictionary attacks dependent
on the chosen cryptosystem.

Typically, the security of an encryption scheme is characterized by certain properties that
the ciphertexts satisfy. For instance, an encryption scheme is said to be repetition concealing
[27] if an adversary cannot detect two instances of the same message encrypted with the same
key, something that can be achieved using probabilistic [99] or stateful encryption is needed.
Similarly, an encryption scheme is which-key concealing if an adversary cannot deduce if two
messages are encrypted under the same key [27]. Besides these general properties, usually
each particular cryptosystem has its own subtleties that can also provide useful information
to an adversary. For example, a public key in RSA consisting of a pair (n, ¢) can be distin-
guished from a random string because e is odd and n contains no small prime factors. As
discussed by Mellovin and Merritt [47], this simple fact allows a dictionary attack over EKE
(the Encrypted Key Exchange [47] protocol) when instantiated with RSA.

In this chapter, we take a different direction than the one proposed in Section 2.7, and
study password protocols using the Applied Pi Calculus [23]. Our choice is based on the fact
that this process calculus allows the modelling of relations between data (e.g. cryptographic
details of the underlying cryptosystem) in a simple and precise manner using equational the-
ories over the term algebra. We thus instantiate the general analysis model of the Introduction
(shown in Figure 1.1) with the one illustrated in Figure 4.1. There, the property model is an
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equivalence between processes (as detailed in Section 4.2.5), while the attacker is thought
as an arbitrary process running in parallel with the protocol process representing the envi-
ronment model, which is the parallel composition of the (sequential) protocol participants’
processes. The considered attacker is stronger than the basic Dolev Yao attacker since it
can exploit particular relations between the messages (see Section 4.2.1) by using particular
equational theories stating the message relations.

Analysis Model for Password Protocols in the Applied Pi Calculus

Environment Model
Dolev-Yao context .
Processes in parallel

Term algebra with equational theories

Property Model

Process equivalence

Figure 4.1: Analysis model for Password protocols in the Applied Pi Calculus

The contribution of this chapter is twofold: First, we show how to analyse, in a pre-
cise formal framework, the security of password protocols when they are instantiated with
particular encryption schemes which may or may not satisfy specific properties. We model
(most of) these properties by extending the equational theory of the Applied Pi Calculus. In
particular, we show how to model encryption schemes which are repetition and which-key
revealing, and also encryption schemes that allow an adversary to distinguish ciphertexts and
public keys from random noise. Second, we study, as illustrating examples, two well-known
protocols: the EPT protocol of Halevi and Krawczyk [107], and the already mentioned EKE
protocol [47]. For EPT, we show that security against dictionary attacks is achieved when
encryption is repetition concealing. For the EKE protocol we show that security can be es-
tablished if encryption is which-key concealing, and ciphertexts and public keys are indistin-
guishable from random noise. Interestingly, our analysis helped us to identify a vulnerability
of EKE that arises when ciphertexts are identifiable. To solve this, we propose a simple
modification that (to the best of our knowledge) is novel.

Of course, assuming such a realistic scenario does not come for free: our security proofs
are manual (however automatic proofs are possible, see the Conclusion), while the approach
of Section 2.7 provides an automatic procedure.

4.2 Applied Pi Calculus

We first very briefly summarize the Applied Pi Calculus from Abadi and Fournet, borrowing
from [23] (with definitions copied verbatim). The process grammar is similar to the one in
the pi calculus, differing in the fact that messages can contain ferms and names need not be
just channel names:

P,Q:=0|PQ|'P|vn.P|if U=V then PelseQ |u(x).P|u(V).P

Here U and V belong to the term grammar, which we describe along with its equational
theory later in Section 4.2.1.
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In this calculus, plain processes as defined above are extended with active substitutions
{z = V}, meaning the replacement of variable = with the term V. {z = V'} can represent
the situation in which a term V' has been sent to the environment, but the environment may
not have the atomic names that appear in V. Still, the environment can refer to V' by using z.

We use the standard notions of equivalences between processes, reduction (—), structural
equivalences (=) and observational equivalence (=) as defined in [23] (we do not define
them here, due to space constraints and the fact that we will mainly use static equivalence,
described below).

Frames, ranging over ¢, , ... are processes built up from active substitutions by parallel
composition and restriction. The domain dom(¢) of a frame ¢ are all the variables that the
frame exports, i.e. the variables such that {x = V} is in ¢ and x is not restricted. Given
aterm M, we denote fn(M) as the set of free names appearing in M. Now we can define
when two terms are equal in a given frame (this definition and the next one follow from [23]).

Definition 4.2.1. We say that two terms M and N are equal in the frame @, and write
(M = N)y, ifand only if p = vi.o, Mo = No' and {n} N (fn(M) U fn(N)) = 0 for

some names 1. and substitution o.

Example 4.2.2. We borrow an example from [23]. Let fand g be two functions with no
equations (they can be thought as two independent one-way functions). Let g = VK, s.{x =
Kyy=s}, ¢ =vK{e = (K),y = 9(K)}, and po = vK{z = K,y = (K)}. In ¢y,
x and y are unrelated, and hence they cannot be distinguished by any pair of terms M and
N. The same happens in ¢1. However, in ¢o, x and y are related: y is obtained from x by
applying f. More formally, let M = f(x) and N = y. Then (M = N)¢2 but not (M = N)g;
fori e [0,1].

The example motivates the definition of static equivalence ~:

Definition 4.2.3. We say that two closed (i.e. with no free variables) frames @ and 1) are
statically equivalent, and write p =, 1, when dom(p) = dom(v) and when, for all terms
M and N, we have (M = N )y if and only if (M = N ).

Given two closed extended processes A and B, we can “extract” their frames ¢(A) and
¢(B), by replacing every plain subprocess of A and B with 0. We then say that two closed
extended processes are statically equivalent, and write A =5 B, when their frames are stati-
cally equivalent. We quote a useful lemma from [23].

Lemma 4.2.4 (Lemma 1 and 2 from [23]). .

1. Observational equivalence and static equivalence coincide on frames. Observational
equivalence is strictly finer than static equivalence on extended processes: ~C=.

2. Static equivalence is closed under reduction and structural equivalence.

Now we are ready to instantiate the calculus with our term grammar and equational the-
ory.

IThis equality is modulo the equational theory.



80 Chapter 4. A Process Algebraic Analysis Model for Guessing Attacks

uv == terms
a,n,r,Na, K,... name
Ty, ... variable
(U, V) pair SdeC({x}y,y) = z
fst( ) field selector pdec({x}pk(y), y) =
snd(U) field selector fst((z,y)) = =«
pk(U) public-key derivation snd((z,y)) = y
h( U) cryptographic hash
{U} symmetric encryption
{UY public-key encryption
sdec(U, V) symmetric decryption
pdec(U, V) public-key decryption

Table 4.1: Grammar for terms (left) and Equational theory EQq (right)

4.2.1 Equational Theories for Standard Adversary Abilities

In this section we first instantiate the Applied Pi Calculus with our term grammar. Then,
we present the equational theory EQ that represents the standard adversary abilities. Af-
terwards, we extend EQq with EQ; and EQ-, two equational theories that provide further
adversary abilities. Our grammar for terms is shown in Table 4.1 (left) (This grammar is
similar to Table 2.1 of Chapter 2). Besides names and variables, we have the usual pair-
ing constructor, along with its projections. Given a name K representing a private key (and
thus usually appearing restricted) we can derive a public-key pk(K) that can then be used
for (public key) encryption’>. We also define the usual hash constructor. Our constructors
for encryption (both symmetric and asymmetric) take a name r as randomness parameter.
This allows us to model probabilistic encryption. By explicitly considering the randomness
parameter as a name, say r, we can model easily repetition concealing vs. revealing cryp-
tosystems by simply restricting or not r (This modelling was already suggested in [23]). On
the other hand, decryption is deterministic.

The standard equational theory EQyq is shown? in Table 4.1 (right). In EQqy we encode
all the standard abilities of the adversary, given by decryption identities and pair projection.
Here, pk(-) and h(-) are modelled as non-reversible operations by implicitly not adding any
ability in EQy.

Under the standard equational theory EQq, non-deterministic encryption behaves as a
“secure envelope”, modelling a repetition concealing cryptosystem Let us illustrate the prac-
tical implications of this with one example. Consider P(M) = vr, K.{x = {M }pk( K) Y
pk(K)}. Process P(M) exports (in x) the encryption of M with pk(K), and also ex-
ports (in y) the used public key. Now, the property of “secure envelope” can be stated as
VM : P(M) =~ vs,k.{x = s,y = k}, which intuitively holds since r is an unguessable

ZHowever, note that in general it may be not possible to obtain the public key from a previously created private
key: Typically, the key pair is created simultaneously. Thus, when a private key K is created using restriction v,
we assume that the corresponding public key is also created. Then, the constructor pk(K) is just a pointer to this
public key.

3Excluding all the equations obtained from reflexivity, symmetry, transitivity and substitution of terms for the
variables x, y and 7.
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sym_ciphertext({z};) = true same_k({z};,{y};) = true
pk_ciphertext({z};;~) = true | samek({z}, ", {y};~) = true
valid_pk(pk(xz)) = true

Table 4.2: Extended equational theories: EQ; (left) and EQ. (right)

seed and K is secret. This expresses that the resulting ciphertext of encrypting a message
M with a public key derived from K is indistinguishable from random “noise” (analogously
for the public key derived from K'). Notice that this holds even if M is possibly known (or
guessable) by the environment.

However, one could argue that this approach models a too strong, often unrealistic en-
cryption mechanism, in at least three ways:

(A1) First, in particular cryptosystems, it can be the case that ciphertexts are distinguishable
from pure random noise, even though the plaintext or encrypting key is not leaked. For
example, a usual indication of the presence of a ciphertext can be found in the length of
the messages (this can happen, for example, when padding is weak or non-existent). In
block ciphers, for instance, ciphertexts typically consist of a certain number of blocks
(e.g. a multiple of 128/256 bits). Similarly, numbers close to each other in RSA
also give a good indication of a ciphertext. As another example, in the McEliece
cryptosystem [140] every ciphertext is a codeword, with a small vector error added to
it. This makes ciphertexts distinguishable from random noise.

(A2) Second, and similar to item 1 above, public keys can also be distinguishable from
random noise, even if the private key is kept secret. As an example (already mentioned
in the introduction), a public key in RSA consists of two large naturals n and e, where
e is always odd and n does not contain small prime factors.

(A3) Finally, encryption could be which-key revealing, allowing an adversary not only to
detect ciphertexts (as in item 1 above) but also to deduce if two ciphertexts were en-
crypted under the same key.

4.2.2 Equational Theories for Extended Cryptographic Relations

To study the security of protocols under these more realistic scenarios, we first need to model
(A1), (A2) and (A3) as adversary abilities. We achieve this with the equational theories of
Table 4.2.

In EQ;, we model the ability of an adversary to distinguish ciphertexts and public keys
from regular messages: sym_ciphertext detects ciphertexts created with symmetric encryp-
tion, while pk_ciphertext recognizes public-key ciphertexts. Similarly, valid_pk detects public
keys. Now, EQoU EQ; models an adversary whose abilities include (A1) and (A2).

In EQ, we add the ability to deduce whether two messages are encrypted under the same
key (with equality same_k.), modelling (A3).

When the equational theory is EQoU EQ;U EQa, the secure envelope property does not
hold anymore: x can be detected by pk_ciphertext, y by valid_pk and finally x and y in
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conjunction can be recognized by same_k. However, a weaker form of a “secure envelope”
still holds, namely

VM, M': P(M) ~; P(M") 4.1
which states that even though an adversary can recognize a ciphertext {-};’,C?K)
crypting public key pk(K), the adversary can still not glean any information about the plain-
text M. Thus, this weaker notion of secure envelope is reduced to express secrecy of M.

and its en-

4.2.3 Modelling Guessing Attacks

In an off-line dictionary attack, the adversary guesses the (weak) shared password and then
tries to verify the guess with the eavesdropped session [135]. Thus, we can regard a proto-
col as secure if it provides no such verification possibility to the adversary. As we already
mentioned, in the Applied Pi Calculus the information gathered by the adversary can be
characterized by using frames. Let the frame ¢ represent the information of an eavesdropped
session and let K be the shared, weak password (K is free in ¢, representing the fact that
K can be “guessed” by the adversary). Then, we can represent the notion of security of a
password protocol against dictionary attacks by checking whether the adversary can distin-
guish ¢ from v K., in which K is bound, representing unguessability. More precisely, by
“seeing” we use static equivalence (==;), as defined in Definition 4.2.3.

Definition 4.2.5. Let ¢ be a frame in which K is free. Then we say that ¢ verifies a guess of
K if ¢ %5 vK.¢. Conversely, we say that ¢ is secure w.r.t. K if ¢ ~; vK.¢.

Intuitively, a distinction of ¢ and v K. models the situation in which the adversary “hits”
the correct guess, and he can verify that fact by using (. On the other hand, if ¢ and vK.¢
are indistinguishable, then an adversary has no way of verifying from ¢ that a given word
(from e.g. a dictionary) is actually the correct password.

For example, if ¢ = vNa.{x = (Na, K)}, then vK.¢ %5 ¢. Intuitively, this follows
from the fact that K is free (guessable!) in ¢, and thus can be used in a term to distinguish z
from random noise. To see this formally, we let M/ = snd(z) and N = K. Then (M = N)¢
but not (M = N)vK.¢. On the other hand, if ¢ = vNa.{x = {Na}} then vK.¢ =, ¢.
To see the (=) of this claim is easy; however the converse is much more difficult. Intuitively,
we need to see that using K does not help in the equality of M and N in ¢. We can assume
that Na does not occur in M or N (because anyway we can rewrite Na to Na’ in ¢, by
alpha conversion). The only case in which M and N can use K in ¢ is by decrypting x; for
example, M = sdec(z, K). But in this case N cannot be Na, and so for (M = N)¢ to hold
we must set N = M = sdec(x, K). But this implies that (M = N)vK.¢ also, by alpha
converting K (to some suitable K') in ¢.

4.3 Case Study 1: Encrypted Password Transmission

In this section we study the Encrypted Password Transmission (EPT) protocol [107]. We first
present the protocol, then translate it into the calculus and finally analyse the security against
dictionary attacks.

EPT is designed to be run between a server S and a user U. We assume that .S and U
share a weak password P, and that the server .S has a strong public-private key pair. Also, U
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has stored a hash of S’s public key, which has been previously securely communicated. The
goal of the protocol is to authenticate U to .S, as shown in Protocol 4.1.

Message 1. S — U : (N,pk(Kg))

Message 2. U — S : {(N, P)};k—(}(s)

Protocol 4.1: Encrypted Password Transmission (EPT) protocol

The protocol proceeds as follows: First, the server sends in the clear to the user a message
consisting of a random challenge (“nonce”) N and his public key pk(Kg) (EPT.1). Then,
the user checks that the received public key, when hashed, matches with his own (stored)
hashed copy of the key. If it does not, then the user aborts. Otherwise, the user answers by
encrypting a pair of N and P with the server’s public key (EPT.2).

4.3.1 Translation in the Calculus

First, we translate the user and server into appropriate processes. Let csyy be a channel name
for communication from S to U and cyg a channel for communication from U to S. By
keeping c;; free in the processes U and S, we allow adversaries (i.e. the environment) to
eavesdrop on these channels. We define S as:

S = vKg, N.(Csu((N,pk(Ks))) - cus(y)-
if (N, P) = pdec(y, Ks)) then Ps) | {pks = pk(Ks)}

Here, we use if C' then P as syntactic sugar for the process if C then P else 0. Process
Ps models what happens after the session was established successfully. Note how the public
key pk(Kg) is exported in variable pks. We assume that none of the values used during the
protocol appear in Pg, and also that Ps never discloses Kg. If the decryption fails, then the
process would abort (executing the implicit 0 of the else branch). The user process U is:

U = vr(csu(x).if (h(snd(x)) = h(pks)) then
s {(1st(x). )Y )-P)

Similarly, Py is the process that the user executes after successful execution of the pro-
tocol (again, no value of the protocol appears in Py). Now, a system of one user and one
server can be setup by letting them share a password P: vP.(U | S). A normal execution of
this process can now be modelled by applying reductions and equivalences, as in [23]:

vP(U|S) —»—= (Ps| Py |vP,Ks,N,1.9)
o= (&= (N, pk(Ks)), y = ((1St(r), P))log. pks = pk(Ks)}

The first two reductions come from the message communications (EPT.1) and (EPT.2),
and the last equivalence corresponds to scope tightenings. Moreover, by structural equiva-
lence we can rewrite ¢ and obtain:

p={z = (N,pk(Ks)),y = {(N. P)} ) i) ks = pk(Ks)}

Intuitively, ¢ (along with its restrictions) represents the information that the environment
has learnt from eavesdropping a run of EPT between a user U and a server S.
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Next, we study whether the information recorded in ¢ can be exploited to mount an
off-line dictionary attack.

4.3.2 Security Against Guessing Attacks

The following lemma states that EPT is secure, in the sense that it does not provide a veri-
fication of a guess of a password to an adversary. To model this, we let P be guessable by
removing it from the restriction, and then compare the result to the case in which it is still
restricted, as in our formalization of guessing attacks in Definition 4.2.5:

Lemma 4.3.1. Let Pg and Py be processes where the names P, Kg, N and r do not appear
free. Then:
(Ps | Py)|vP,Ks,N,r.p~ (Ps | Py) | vKg,N,r.¢ 3)

Proof. (Sketch) We first establish the static equivalence:
vP, Ks,N,r.p =s vKg, N, 1.0 “4)

Equivalence (4) is an instance of the following equivalence:

{»T = (R, pk(Ks)), {z = (R, pk(Ky)),
vN,Ks,r. | 4= {U} (ke ~o N, Ks,r. | 4=V} ks (5)
pks = pk(Ks)} pks = pk(Ks)}

Where R is a term s.t. {Kg,r} N fn(R) = 0, and U and V are arbitrary terms. Equiv-
alence (5) can be established similarly to Equivalence A.4 in Lemma 11 of [24] (there, con-
structor hello is similar to our pairing constructor). The following equivalence also holds:

{CU = (R, pk(Ks)), {z = (R, pk(Ks)),
vN,Kg,r. = {V} (ke ~s VP, N, Ks,m. | ¥y ={V}pxe) (6)
pk‘s = pk(Ks)} pks = pk(Ks)}

When P ¢ fn(R)and P ¢ fn(V). Finally consider the equivalence:

VP7N5KSaT' {W}pk KS)’ %S UP,N,KS,T‘. y:{X};k(KS)v (7)
pks = pk(Ks)} pks = pk(Ks)}

For arbitrary terms W and X. This equivalence can be shown in the same way as (5).

Hence, we can instantiate R = N, U = X = (N, P),V =W = (N, N) in (5), (6) and
(7) to obtain (4). Note that this holds even when we consider as equational theory our most
powerful adversary, with EQq U EQ1 U EQs.

Finally, by Lemma 4.2.4 (1), we lift the result to observational equivalence (=) to obtain
3). O
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Intuitively, the lemma follows from the fact that r is an unguessable, freshly generated
seed, and then the environment can never distinguish y in ¢ from noise.

While proving this lemma, the main cryptographic requirement of the protocol w.r.t. its
underlying encryption is uncovered: it must be repetition concealing. Discovering an attack
in the case of repetition revealing (and thus deterministic) encryption is not difficult. To
model deterministic encryption, we remove 7 from the restriction operator, thus letting the
environment control it. So, let ¢g be vP, Kg, N.¢ and ¢ be vKg, N.p. Then, ¢g %5 ¢1.
Let My = y and My = {(fst(x),P)}g;&m). Then, (M; = Ms)¢$q but not (M = Ma)dy.
Thus, when encryption is not repetition concealing the protocol is not secure. This is in
accordance with [107], where encryption is asked to be semantically secure [99]*.

The underlying encryption does not have to be which-key concealing to establish the
security of EPT. In fact, all the abilities introduced by EQ; and EQ5 do not affect (3). This
makes EPT a robust protocol. Interestingly, in the next protocol (EKE) we analyse, the
requirements are the other way around: repetition concealing is irrelevant, whilst the feature
of being which-key concealing is crucial to establish security against dictionary attacks.

4.4 Case Study 2: Encrypted Key Exchange

In this section we analyse the Encrypted Key Exchange protocol, presented in [47]. The EKE
protocol is designed to solve the problem of authenticated key exchange while being resistant
against dictionary attacks.

Differently from the EPT protocol studied in the previous section, which required U to
have a stored hashed copy of the server’s public key, EKE (shown here as Protocol 4.2) is a
password-only protocol, which assumes only a weak shared password in common.

Message 1. A — B : {pk(K)}p
Message2. B — A: {{R};’;(K)};
Message 3. A — B:{Na}}
Message4. B — A:{(Na,Ng)}%
Message 5. A — B:{Np}}

Protocol 4.2: Encrypted Key Exchange (EKE) protocol

First, A generates a new private key K, and then derives the public key pk(K). Then,
A encrypts pk(K) with the shared password P and sends it to B (EKE.1). Then, B extracts
pk(K), generates a fresh session key R and encrypts it with pk(K). Then, B encrypts again
the resulting message with P and sends it to A (EKE.2). The following three messages
(EKE.q), i = 3,4, 5, exchange nonces N4 and Np to perform the “hand-shaking” necessary
to defend against replay attacks.

“4In fact, in [107] a stronger notion of security is required, necessary to resist active adversaries. We do not need
that here, since we are dealing with passive adversaries only.
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4.4.1 Translation in the Calculus

The user process A can be defined as:

A= vK,r(cag{{pk(K)}%) . cpa(x1).(vk.({k = sdec(pdec(z1, K), P)}
| (vu, Na€ag({Na}l}) - cpa(za) .
if (N4 = fst(sdec(z2, k))) then vw.cap({snd(sdec(z2, k))}}*).Pa))))

Process P4 is executed after the successful execution of the protocol. We assume that
none of the values introduced by the protocol appear in P4, except for the exchanged session
key (represented as free variable k in P4.) Similarly, the user process B is defined as follows:

B= (cap(y1) - us,t,R.@({{R};;(myp)}ﬁ .cap(y2) | vv, Np.
cpA({(sdec(y2, R), Ng)}%) . cap(ys). if (Np = sdec(ys, R)) then Pg)
Here, we ask the same restrictions for Pp that we asked for P4. Similarly to the EPT
protocol, we set up a session vP.(A | B). Now, this protocol reduces to vP.(A | B) —°==

vk.(Ps | Pg | @), where p = vP, K, Na, Ng, R, 7, s,t,u,v, w.pp, with:

vo=1{ y1={pk(K)}Yp, 21 = ({R}Y ey, o)} 0o ¥2 = {Na}E,
s = {(sdec(y2, R), N)} %, ys = {snd(sdec(z2, R))}{ }

The five above reductions correspond to the messages exchanges (EKE.i), 7 = 1,2, 3,4, 5.
The last two equivalences correspond to scope tightenings plus scope extrusion of k. Finally,
(o can be shown equivalent to:

po={ k=Ruy = {pk(K)}p z1={{R} 5} v2 = {Nalp
z2 = {(Na,Np)} . v3 = {NB}§

4.4.2 Security Against Guessing Attacks

Consider the frame pp = vP, K, Ns, Np, R, 7, s,t,u,v,w.09. Here, pp- is the same as
o p but without P being restricted. Our analysis against dictionary attacks can be carried out
by relating pp to @p- by static equivalence. By lifting the restriction on same names and
by adding equational theories (EQ; and EQ-) to the framework, we can analyze a range of
different scenarios. We first start by weakening the underlying encryption and consider EKE
being instantiated with a repetition revealing cryptosystem (although we still consider only
standard abilities EQg.)

Repetition Concealing. An interesting fact to note in EKE is that security does not really
depend on whether encryption is repetition concealing or not. To see this, consider the frame
¢p = vP,K,N4s,Np, R, k.¢y and similarly ¢p- = vK, N, Np, R, k.. Frames ¢p
and ¢p- are the same frames as ¢ p and ¢ p- respectively but with the randomness values
(r,s,t,u,v and w) being “guessable”. This models an encryption scheme that is not repeti-
tion concealing, since now the adversary controls the seeds and thus can detect repetitions of
same messages. However, the following lemma states that this extra information cannot be
exploited by the adversary. If the adversary can distinguish ¢p and ¢ p— where the seeds are
known, then she could also distinguish ¢ p and ¢ p— where the seeds are unguessable.

Lemma 4.4.1. ¢p =, ¢p- iff op =~ pp-.
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The lemma is shown similarly to Lemma 4.3.1. Intuitively, the lemma holds since letting
the adversary have the seeds 7, s,t,u, v and w never helps in the task of distinguishing x;
nor y;, for ¢ = 1,2 and j = 1,2, 3. Having r does not help to recognize y,, since pk(K)
is indistinguishable from random noise when K is private (However this is not true anymore
when considering EQ, as explained below.) Having s and ¢ does not help to recognize z1,
since now R is random. The remaining cases are similar (for x2, ¥ and y3.) Then, we obtain
that pp ~s ¢p and pp- =, ¢p-, which then allow us to conclude that pp ~; pp- iff
Ypr ~s Pp--

While establishing the lemma, we see two cryptographic requirements of EKE:

1. Encryption may be repetition revealing since R is strong. In other words, it must be
difficult to compromise 2 by brute-force attacking y2, 2 and y3 when encryption is
repetition revealing, since otherwise 1 could be distinguished from noise (and thus

op #s op--)

2. K must not be used more than once. This can be an important deficiency of EKE,
since generation of new keys can sometimes be expensive. In fact, this is where the
later protocol OKE [136] improves on EKE. To model a key K used twice, we repre-
sent two sessions sharing the same K:

Let ox p be vK,P.(vR,Na,Np.o | VR, Ny, Ng.(,) where } is analogous to
$o-

Similarly, let px p- be vK.(vR,Na, Np.go | vR', N)y, N.¢() where P is guess-
able. Now, o p %, ¢ p- since the environment can distinguish them by comparing
sdec(y1, P) and sdec(y, P).

Which-key Concealing. Now we consider the possibility of an adversary to recognize
under which key is a message encrypted. To model this, we consider as our equational
theory EQqp U EQ».

We want to see if, under a cryptosystem that is not which-key concealing, op ~5 Yp-.
By Lemma 4.4.1, it suffices to show that ¢p ~; ¢p-. However, this is not the case, and
actually we can see that ¢p 25 ¢p-. Let M = sdec(z1, P) and N = {x};‘é’;(yhp). Then,
(same_k(M, N) = true)pp- but not (same_k(M, N) = true)pp.

Identifying public keys. While showing Lemma 4.4.1, we used the argument that pk(K)
is indistinguishable from random noise when K is restricted and thus unguessable. If we
consider EQy U EQ); as our equational theory, this does not hold anymore. Intuitively, if
an adversary is able to tell whether a public key is valid or not, an adversary could compare
many eavesdropped sessions (with many messages (EKE.1)) and narrow the password space
considerably, therefore mounting a successful attack over P. The attack is exposed in our set-
ting since when we add EQ;, we see immediately that o p %, ¢ p-, simply by noticing that
decrypting message (EKE.1) returns a valid public key: Let M = wvalid_pk(sdec(y;, P))
and N = true. Then (M = N)¢p but not (M = N)¢pp-.

Identifying ciphertexts. EQ; allows to distinguish ciphertexts. Then, a possible attack
(similar to the one presented above on (EKE.1)) can be mounted on (EKE.2). Here, decrypt-
ing (EKE.2) with a good guess returns a valid ciphertext that pk_ciphertext recognizes, thus
allowing an attack. However, we propose to change (EKE.2) to:

B—A : {{R}Yp}x (EKE’.2)
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Now, message (EKE’.2) does not provide any verification of a guess of P, since the fact
that pk_ciphertext can recognize (EKE’.2) is now irrelevant if K is secret. Thus, the above
attack is prevented. To the best of our knowledge, this modification to EKE has not been
proposed before.

Security against dictionary attacks. If we consider only EQq, that is, we assume that
encryption is which-key concealing and public keys and ciphertexts are not recognizable,
then we can state the security of EKE against dictionary attacks. The next theorem shows
that the established key session is a secure key, i.e. an adversary cannot discover it by
only overhearing the messages exchanged during the execution of the protocol. Let ¢/,_
be vq,r, s, t,u,v,w.@y, where ¢ is ¢y = {11 = {r}b, 21 = {t}5, 920 = w20 =
v,y3 = w}. Then, we relate vk.(P4 | P | ¢p), the message exchanges in EKE, with
VR.((Pa | P){k = R} | ¢/»_), in which P is made guessable but encrypting random
values r and ¢.

Theorem 4.4.2. Let P4 and Pp be processes with free variable k where R does not appear.
Then, vk.(P4 | Pp | pp) = VR.((Pa | Pp){k = R} | ¢'p_).

Proof. (Sketch) Thanks to Lemma 4.4.1, it suffices to show that ¢ ~; ¢p-, which can be
established by case analysis over the messages of ¢p as in Lemma 4.4.1. Then, we can
see that pp- ~, ¢’»_ to conclude that pp ~, ¢’,_. To obtain the desired observational
equivalence we apply Lemma 4.2.4. O

Intuitively, Theorem 4.4.2 says that EKE gives no verification of a guess of P, and fur-
thermore the session key k between P4 and Ppg is indistinguishable from random noise.

4.5 Conclusions

In this chapter we revisit the analysis of password protocols against guessing attacks, also
known as off-line dictionary attacks, using the Applied Pi Calculus [23]. This calculus fol-
lows previous successful proposed process algebraic languages for security (e.g. [25, 138,
105]).

Guessing attacks were already initially explored in Section 2.7, under an attacker based
on the Dolev Yao framework and capable of guessing weak keys. Here, we use a process
algebraic language that allows the specification of more powerful attacker abilities on top of
the standard ones (represented in our approach by the equational theory EQg), so we have
a more realistic setting. To this end, we have introduced two further equational theories
EQ; and EQ-, that model additional adversary abilities. The latter ability modelled by EQs,
namely which-key revealing, was already considered in [94, 24], where the presence of such
an ability would spoil immediately the privacy guarantees of the protocol. In this chapter,
we allow EQ; to enter the scene explicitly, and study whether its presence allows or not a
dictionary attack. We also introduced the equational theory EQ;, that models the ability of
an adversary to distinguish ciphertexts and public keys from random noise. To the best of
our knowledge, we do not know of other formal approach for security protocol analysis that
considered such an adversary ability. We also considered the ability in which an adversary
detects repetition of same messages.

These non-standard abilities turned out to be crucial to decide the security of our case
studies, EPT and EKE protocols. Moreover, we believe that our analysis helps to identify



Section 4.5. Conclusions 89

which are the precise cryptographic assumptions that a protocol needs to rely on. For ex-
ample, as we illustrated with the analysis of EKE, a protocol designer can decide whether to
strengthen the underlying encryption or to require stronger key session and nonces, but asking
for both may be unnecessary. Furthermore, our technique allows one to spot possible sources
of confusions and possible attacks. In particular, we found a new vulnerability for EKE
when instantiated with an encryption scheme in which ciphertexts can be distinguished from
random noise (i.e. EQq). To prevent the attack we propose a simple modification to EKE
consisting on changing the order of encryption in Message (EKE.2) to Message (EKE’.2).

An interesting future work is to apply our technique to study the rich field of (later)
proposed password protocols (e.g. the protocols proposed in [136, 62, 118].)

Recently, Blanchet proposed an extension to the tool ProVerif [55] (the tool that is used by
the TulaFale language in the next chapter) to prove automatically strong secrecy for security
protocols [56]. Indeed, their (independently developed) notion of strong secrecy, presented
in Definition 2 of [56] (and later refined as weak secrecy by Blanchet, Abadi and Fournet
in [57]), generalizes our Definition 4.2.5. Thus, it would be interesting to validate the (man-
ual) proofs presented in this chapter using Blanchet’s technique. This seems to be feasible,
as evidenced by the fact that Blanchet’s technique has been recently used successfully by
Kremer and Ryan [122] to analyse the FOO 92 [97] voting protocol, where security against
guessing attacks is analysed using our notion of security (our Definition 4.2.5 appears as
Definition 2 in [122]).

Even more recently, Baudet [40] proposes a decision procedure for our Definition 4.2.5,
using a constraint solving algorithm with an equational theory (implemented with a special-
ized convergent rewrite system) for a bounded number of sessions.

As future work, it would be interesting to relate (and further clarify the similarities and
differences) between Baudet’s work [40], our developments of the present thesis (including
also Chapter 2) and Blanchet’s et al. work [56, 57].






CHAPTER 5

A Process Algebraic
Model for Session-based
Web Services

5.1 Introduction

In this chapter we consider the analysis of security protocols deployed as part of web ser-
vices. These protocols are built on asynchronous communication of XML encoded messages
called SOAP envelopes [163]. In this setting, the protocol principals are web clients (typ-
ically running as initiators), web services (usually the responders) and several third-party
participants like servers that provide additional resources.

Just like regular messages, SOAP envelopes need to be secured on transit. The mecha-
nisms of WS-Security [153] provide means to secure the SOAP envelopes to achieve end-to-
end security, using security tokens. Examples of security tokens include X.509 certificates,
username tokens, and XML-encoded Kerberos tickets.

In itself, WS-Security provides mechanisms for securing a single envelope. However,
typically a web service and a client may interact by exchanging series of messages grouped
in sessions. In principle WS-Security could secure each separate message of the session,
although doing this is inefficient (for example, if X.509 certificates are used in each message).
Also, it is often desirable to guarantee integrity of a whole session, and not just each message.
For instance, a client querying two services should not be led to attribute a response to the
wrong service. On top of WS-Security, the recent specifications WS-Trust [117] and WS-
SecureConversation [116] provide mechanisms for communicating parties to establish shared
security contexts and to use them to secure SOAP-based sessions.

This chapter investigates the security guarantees offered by the WS-Trust and WS-Secu-
reConversation specifications by constructing formal models in the TulaFale scripting lan-
guage [52]. Briefly, TulaFale is an XML version of a process algebraic language (similar
to the Applied Pi Calculus of the previous chapter) which allows the specification of a rich
environment model, by providing means to specify processes that describe each protocol
principal. Each process may access special (prolog like) predicates, used to filter SOAP en-
velopes. For example, predicates can be specified for checking that SOAP envelopes have the
appropriate expected XML syntax. Moreover, a predicate can perform cryptographic checks
on parts of the SOAP envelope, possibly returning data to the calling process. Furthermore,
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just like the Applied Pi Calculus of the previous chapter, TulaFale processes can be replicated
(the bang construct (!) that provides infinite instances of a process) and composed in parallel,
thus providing powerful modelling capabilities. In particular, replicating processes allow us
to model a possibly unbounded number of participants. Also, replication provides means to
encode recursive processes, thus allowing to encode protocol participants which may exe-
cute by looping for an (a-priori) unknown number of times. This feature allows us to provide
an expressive environment model that encodes participants like clients and services which
engage on open-ended message exchanges, thus modelling protocol sessions faithfully.

Our analysis model is presented in Figure 5.1. It is an instantiation of the general model
of the Introduction (shown in Figure 1.1), by letting the environment model consist of a
TulaFale model. The language also provides means to specify properties (namely secrecy
and agreement properties, to cover authentication), conforming the property model. Finally,
the attacker model describes an attacker being an unspecified, arbitrary process that runs
in parallel with the TulaFale system model (called a context). Still, the attacker has the
capabilities of the Dolev Yao attacker described in the Introduction, although in addition we
also model the leaking of information, thus modelling insider attacks. We elaborate on the
analysis model in Section 5.2.

We build our models by studying both the specifications and the WSE implementa-
tion [146]. Modelling reveals some potential vulnerabilities as well as allowing us to prove
some formal properties.

Analysis Model for Session-based Web Services protocols
Dolev—Yao Environment Model
context TulaFale model

Figure 5.1: Analysis model for Session based Web-service security protocols

Property Model

Agreement and secrecy

Session establishment, WS-Trust and WS-SecureConversation Session estab-
lishment is of course not a new issue in cryptography: indeed, numerous classic protocols aim
at the mutual authentication of the parties involved in the session, the negotiation of parame-
ters for the session, and the protection of further traffic. (See for example [83, 154, 96, 108].)
Moreover, their main secrecy and authentication properties have often been thoroughly stud-
ied. Most of their concepts and mechanisms can be usefully applied to SOAP-based proto-
cols, but experience also suggests that this adaptation is not straightforward.

Building on top of WS-Security, WS-Trust [117] describes how security tokens can be
requested and issued by SOAP processors; it relies on a dedicated security token service
(STS) to evaluate requests and issue tokens. Moreover, WS-SecureConversation [116] de-
scribes the usage of one such token, named a security context token. The token points to a
security context (SC) typically shared between a client and a web service; its contents can
be used to derive keys to protect traffic between these two parties. (There exist two versions
of WS-Trust and WS-SecureConversation, released in May 2004 and February 2005. In this
chapter, their differences are unimportant, so we focus on the latter version.)
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Figure 5.2: A typical protocol relying on WS-Trust and WS-SecureConversation

Trust

Figure 5.2 shows a typical usage scenario of WS-Trust and WS-SecureConversation. It
roughly corresponds to the sample protocol given in a WSE tutorial [106]; we refer to this
tutorial for additional implementation details for this protocol.

Three SOAP processors are displayed: a client, a security token service STS, and a web
service. For simplicity, both the STS and the service are co-located and share a session cache
(the dashed line in the figure). The STS is configured to establish secure contexts, SCs,
with authenticated clients, to be used between clients and services. The first two steps rely
on mechanisms covered by WS-Trust, while the latter exchanges (step 3) are specified by
WS-SecureConversation.

The execution proceeds as follows. At step 1, the client contacts the STS with a Request
Security Token (RST) message, including some form of identity token plus information about
the target service. The STS, after authorization of the request, generates a new secure context
SC, caches it, and replies with a Request Security Token Response (RSTR) message that
includes a security context token (SCT) to indicate that a new SC has been created (step 2).
Crucially, the RSTR contains enough information to allow the client to compute the same SC
(with the same shared secret) as the cached version. This allows the client and service to start
exchanging messages (step 3) protected using keys derived from the shared secret of the SC.

Chapter Contribution We describe, in Section 5.2, a realistic attacker model for web
services, essentially an active attacker with some access to insider secrets. In Sections 5.3
and 5.4 we propose a formal counterpart to web services security specifications for session
management, as a collection of predicates and processes reflecting their semantics. Then we
develop simple, typical protocols relying on these specifications, and experiment with their
implementation using WSE. We state and prove a series of core security properties for these
protocols, thereby gaining confidence in our model of these specifications. In Section 5.5 we
apply our developments to analyse a concrete protocol used in the Interoperability workshop
by several industrial companies to test their implementations.

To the best of our knowledge, this is the first formal analysis of these two web services
specifications, and these are the most complex SOAP-based security protocols yet formal-
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ized.

The chapter includes only small excerpts from the TulaFale scripts used to establish its
main results. The complete scripts are included as examples in the TulaFale distribution,
available at http://Securing.Ws.

5.2 An Analysis Model for Web Service Security Pro-
tocols

As mentioned in the Introduction, our formalizations are based on TulaFale [52], an XML
version of the Dolev-Yao model embedded within the pi calculus, of which the applied pi
calculus of the previous chapter is a variant.  Briefly, a computation in the pi calculus
consists of a sequence of reductions in which a message is passed from a sender to a receiver
process. When considering cryptographic protocols in the pi calculus, protocol participants
are written as explicit processes, whereas the active attacker is thought of as an arbitrary
unknown process running in parallel to the protocol participants. There is a wide range of
formal techniques, including automated tools, for analyzing such models of cryptographic
protocols expressed in variations of the pi calculus. In particular, our TulaFale tool makes
use of the ProVerif analyzer [55].

This section divides into two parts. The first part reviews the TulaFale language. The
second part explains the particular threat model considered in this chapter.

5.2.1 Building an Analysis Model in TulaFale

A TulaFale script defines an explicit system of multiple processes running in parallel, rep-
resenting protocol participants. Processes interact by sending and receiving messages on a
fixed set of channels. Messages are terms in an algebraic model of XML, with signature
and encryption primitives represented by idealized cryptographic functions [50]. The mes-
sage formats of typical Dolev-Yao formalisms are rather abstract, and omit many details of
the wire representation. In contrast, the TulaFale message format has the detailed structure
of XML, and hence is sensitive to rewriting attacks that exploit this structure, such as for
instance the compound structure of XML digital signatures. Moreover, we can directly tran-
scribe the message formats of web services specifications into TulaFale, and experimentally
check fidelity of the model with respect to messages generated by implementations.

We use logic programming to construct and check messages. For example, the following
predicate asserts that the term tok is a username token [153, Section 6.2] for a principal with
username u and password pwd, and that k is the symmetric key derived from this password
using the nonce n and the timestamp t embedded in the token.

predicate isUserToken (tok:item,u,pwd:string,n:bytes,t:string k:bytes) : —
tok = <UsernameToken>
<Username>u </>
<Nonce> base64(n) </>
<Created>t</>
</>,
k = pshal(pwd,concat(utf8("WS—Security"),concat(n,utf8(t)))).
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All the predicates shown in the remainder of the chapter are extracted from the code of our
formal model [49]. For the sake of brevity, TulaFale omits all XML namespace information,
and uses some non-standard abbreviations, such as omitting the tag in a closing element
bracket </>. Also, literal strings such as "WS—-Security" are always quoted, whether they
are within attributes or elements. Unquoted identifiers, such as u in <Username>u</>, are
variables. Every variable has a sort: a string is an XML string, an item is an XML element
or string, and a bytes is an array of bytes. Function symbols such as base64 and pshal are
abstract representations of operations on the data model; the function pshal is an idealized
hash function with no inverse. Given certain implementability constraints [50], predicates
may be used in different modes, depending on whether each parameter is an input or an
output. In our example, if tok and k are output parameters, and all the other parameters are
inputs, TulaFale computes the two outputs, to yield a username token and its associated key.

We model web services and their clients as explicit processes that send and receive mes-
sages on a single ‘soap’ channel, which models arbitrary transport layers for SOAP messag-
ing. In addition, we annotate processes with events that record the completion of the different
phases of protocols. There are two kinds of events, begin and end, to mark initiation and ap-
parently successful completion, respectively. Events carry data such as participant identities
and the contents of messages exchanged.

We model the (unknown) active attacker as an implicit process that runs alongside the
explicit processes, and which may interact with them via public channels, such as soap.
By default, all channels are public; the attacker process has no direct access to any private
channels, which typically model private databases shared between clients and servers.

For a given TulaFale script, a run is any series of (potentially nondeterministic) pi calcu-
lus reductions and events starting from the explicit system composed with the attacker. The
attacker process is arbitrary, except it may not itself generate any events. The observable
result of a run is a set of events. Our authentication results are one-to-many correspondences
[164] (also known as non-injective agreements [133]) between events. We formulate these
as robust safety theorems: in every run of the system, every occurrence of an end event has
a corresponding begin event with the same data. For instance, authentication of an RST
message is expressed as a correspondence between events marking the client sending and
the server receiving the RST. Most security properties of TulaFale models in this chapter are
proved automatically by compiling to an intermediate pi calculus, and then running Pro Verif.

5.2.2 Principals, Authentication Materials, and Key Leakage
Our models assume the following participants and authentication materials:

e A single certification authority (CA), with public/private keypair kr/sr, that issues
X.509 public-key certificates identifying clients and services, signed by the private
key sr.

e Multiple principals, each identified by a username u, and equipped with passwords or
X.509 certificates issued by the CA.

We assume a single trusted database (coded as messages on a private channel anyPrincipal)
that relates usernames to passwords or private keys and certificates. We allow each principal
to have multiple passwords and multiple certificates. A certificate for principal u has subject
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name u. This database is not accessible to the attacker, but is accessible to client and server
processes acting on behalf of users. (In practice, of course, each principal would access in-
stead a local database that contains only a small subset of all passwords and private keys, but
this is outside our model.)

We do not fix a particular principal population; instead, we provide public channels to
allow the attacker to trigger the generation of fresh authentication materials for arbitrary
usernames. Similarly, we do not fix any particular protocol sessions or bound the number of
concurrent sessions. We allow the attacker to initiate sessions with arbitrary principals in the
roles of clients and servers, and with other parameters chosen by the attacker.

We assume the private key of the CA never leaks to the attacker. However, to model
insider attacks, we allow passwords, other private keys, and security contexts to leak to the
attacker. In our setting, we say a principal is unsafe if any of their passwords or private keys
has been leaked to the attacker; otherwise, we say the principal is safe. Similarly, we say a
WS-Trust security context is unsafe if it has been leaked to the attacker, and is safe otherwise.

In summary, our system model provides an interface—a set of public channels—to the
attacker, giving it the following abilities:

e To send and receive on the soap channel.
e To trigger the generation of a fresh password or a new certificate for any principal.
e To initiate sessions and provide their parameters to clients and servers.

e To cause the leak of passwords or certificates for any principal (but not the certificate
authority).

e To cause the leak of established security contexts.

This amounts to a realistic threat model for XML rewriting attacks on web services;
it is essential to consider vulnerabilities due to unsafe principals—insider attacks—and in-
deed we describe such vulnerabilities. (Other threats to web services outside the scope of
this model include SQL injection attacks in SOAP payloads and buffer overruns on the net-
working stack.) Our formal properties concern safe principals, and hold despite the active
attacker’s ability to craft messages using the authentication materials of unsafe principals.
This model of systems and potentially unsafe principals is similar to the TulaFale model in
an earlier chapter [51].

5.3 Web Services Trust Language

WS-Trust “provides a framework for requesting and issuing security tokens, and to broker
trust relationships” [117]. We survey and discuss its contents, focusing on the parts modelled
in this chapter. We refer to the specification for additional information.

5.3.1 WS-Trust as a Protocol Framework

WS-Trust introduces dedicated web services, named security token services (STS), that han-
dle requests for security tokens (RSTs) and send responses (RSTRs). Like any SOAP mes-
sages, envelopes carrying RSTs and RSTRs may be protected using a selection of mecha-
nisms described in WS-Security.
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WS-Trust is deliberately abstract; it provides a general terminology, some precise XML
syntax for exchanged data, and an informal description of their usage in context establishment
protocols. On the other hand, it avoids defining complete protocols; for instance, it never
prescribes any kind of authorization procedure for establishing a security context.

In a common case, a single exchange establishes context: the client sends an RST as the
body of an envelope; the STS replies with an RSTR as the (partly encrypted) body of another
envelope; and both envelopes include security headers for authentication.

However, other flows of RSTs and RSTRs are possible. In more complex exchanges, any
subsequent messages received by the STS are also formatted as RSTRs. In addition, STSs
may initiate exchanges by sending unsolicited RSTRs. STSs implement four SOAP actions
and corresponding message elements for managing security tokens: for issuance, renewal,
cancellation, and validation. Moreover, RST and RSTRs need not appear as envelope bod-
ies; they may also be embedded in the security headers of envelopes carrying other primary
payload. WS-Trust allows security token exchanges to be nested. For example, a client may
need to contact several STSs to accumulate enough cryptographic evidence before accessing
a service; similarly, an STS may contact other STSs in the process of gathering adequate se-
curity tokens. Finally, this traffic may itself be protected using tokens previously exchanged.

The goal of these exchanges is to reach an agreement on a security context (SC) shared
between different parties. The nature of the agreement is left unspecified. For instance, an
STS may simply be a public repository for X.509 certificates that accepts anonymous requests
and responds with matching certificates, with no particular trust relationship or agreement
at the end of the exchange. On the other hand, an STS may establish a protected session
between a client and a service, after authenticating the client and enforcing access control to
the service, thereby ensuring a precise agreement between the client and the service.

Our formal model (in Section 5.3.4) focuses on the core security aspects of WS-Trust.
The model omits some other aspects: renewal, cancellation, and validation actions; error han-
dling; unsolicited RSTRs; and advanced algorithm negotiation and delegation mechanisms.
WS-Trust also proposes an optional attribute RequestSecurityToken/@context for correla-
tion between RST and RSTRs. In our model, we rely instead on the message identifier of the
enclosing envelope, which plays a similar role.

5.3.2 Syntax for RST/RSTR Exchanges

In what follows, we focus on STSs that implement a simple, two-message RST/RSTR ex-
change for establishing a security context, as described in the specification [117, Section
6.1-2]. We begin by explaining the detail of the syntax of these messages and their intended
semantics, which we reflect in our models.

Principals: An RST may contain a BaseToken element, typically an X.509 certificate or a
username token, that identifies the requesting principal and that can be used to authen-
ticate the enclosing envelope. Alternatively, the RST may be anonymous. The RST
may also contain an <AppliesTo> element indicating the service with whom the
client wishes to establish a security context.

Keying: WS-Trust provides optional mechanisms for key establishment: both the client and
the STS may include some (encrypted) fresh random valuereferred to as entropy; the
established context key, if any, is either one of these values, or their joint hash. In



98 Chapter 5. A Process Algebraic Model for Session-based Web Services

the latter case, for instance, each party decrypts the other party’s entropy, then com-
putes sckey = pshal(clientEntropy,stsEntropy) and stores this key as part of the newly-
established security context. A benefit of this computation is that the freshness of the
key is guaranteed, irrespective of the other party’s choice of entropy. (Conversely, if
for instance the client accepts an STS-only key, an unsafe STS may supply an arbitrary
key, possibly already used in another session.)

Negotiation: RSTs may include additional information, used for instance to demand some
choice of cryptographic algorithm or policy, or to provide further authorization materi-
als. We deal abstractly with such additional information, by recording it in the security
context.

As a first concrete example of TulaFale code modelling WS-Trust, we give the predicates
that verify the structure of RST and RSTR elements in our script. Anticipating WS-Secu-
reConversation, we assume that "SecurityContextToken" (SCT) is the type of the
requested security token: a basic token with an identity and a key, computed here from client
and server entropies.

predicate EntropicRST(rst:item,srvURI:string,etok,Extralnfo:item): —
rst = <RequestSecurityToken>
<TokenType>"SecurityContextToken"</>
<RequestType>"Issue"</>
<AppliesTo><EndpointReference>srvURI</></>
<Entropy>etok </>
Extralnfo
</>.

The STS decomposes each incoming RST with this predicate; it relies on pattern match-
ing to decompose a (presumed) rst element passed as the first argument into a series of ele-
ments. The constant parts in the pattern ensure the RST is a request for SCT issuance; srvURI
provides information on the intent of the SCT, here the URI of the web service; etok is the
client entropy, encrypted for the service; finally, Extralnfo collects elements not explicitly
used in our model, but perhaps trusted by the protocol participants.

RSTRs returned by the STS include a requested security token that indicates the identifier
of the (newly created) SCT and a requested proof token that contains (typically encrypted)
server entropy used to compute the SCT key. It may also include an <AppliesTo> (not
necessarily matching the RST).

predicate EntropicRSTR(rstr:item,srvURI:string,Base Token:item,
uriSTS:string,sctid:string,etok:item): —
rstr = <RequestSecurityTokenResponse>
<AppliesTo><EndpointReference>srvURI</></>
<RequestedSecurityToken>
<SecurityContextToken>
<Identifier>sctid</></></>
<Entropy>etok </>
<RequestInfo>
BaseToken
uriSTS </>
</>.
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The client decomposes each incoming RSTR with this predicate; it extracts the srvURI (im-
plicitly comparing it to the request srvURI if this parameter is bound when calling the pred-
icate) and the STS’s contributions to the SC (namely its identifier sctid and its encrypted
entropy etok).

Our model extends the specification to require that the RSTR include a non-standard
element, <RequestInfo>, with additional information about the RST, namely the token
used to sign the RST and the URI it was sent to. Without this extension, it is not possible to
securely correlate the RSTR with its RST.

5.3.3 Towards an Explicit Agreement on the Exchange

Session establishment is a well-studied goal for cryptographic protocols. In contrast to speci-
fications of fixed protocol, however, WS-Trust leaves open several important design decisions
that should be carefully considered when assembling a protocol.

Crucially, RST/RSTR exchanges aim to establish shared security contexts, but the con-
tents of these contexts (including the participants’ intentions) is left implicit. This can be a
source of confusion, inasmuch as the flexibility of web services enables many different levels
of agreement between processors sharing a context. Ideally, the specifications should help
secure precise agreements on security contexts between clients, STSs, and servers. Follow-
ing well-established prudent practices, a simple way to achieve strong agreement would be
to supplement the syntax of RSTs and RSTRs with (optional, well-defined) data on the ex-
change, such as selected modes for authentication and keying, and identities of the requester,
issuer, and target service. It is also important that this syntax be specified, so that its presence
and contents can be validated.

For a given system, one should explicitly state what is guaranteed, both when an STS
accepts an RST and issues an RSTR, and then when a client accepts an RSTR. These guar-
antees depend both on the contents and processing of the RST and RSTR. Hence, one should
carefully review:

1. what needs to be agreed upon—typically not just the SCT key;
2. what is passed in the RST/RSTR (notably the signed materials in these messages);

3. whether the web service implementations actually provide an agreement based on their
processing of the exchange.

In a given implementation, an effective agreement depends on details of envelope pro-
cessing. Still, the safety of security contexts should not overly rely on implementation
choices. At least, whenever an exchange succeeds, the protocol designer may expect that
any piece of data recorded in the security context is authentic. In comparison, traditional ses-
sion establishment protocols like SSL [96] or IKE [108] have specific options and guarantees
to reach precise agreements, typically covering at least any data exchanged by the protocol.

Following the scenario illustrated in Figure 5.2, we define a concrete agreement. The
agreement should at least cover the actual contents of SCs observed in the WSE implemen-
tation: a shared SCT identifier, a key, and some identity information for the three involved
principals. It should also cover security parameters used in the exchange, such as:
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o Whether the RST client is authenticated or anonymous. For instance, a client may
be convinced it is authenticated because its signature was accepted, whereas the STS
received an unsigned request with the same message identifier and assumed an anony-
mous token was requested.

e Whether both the client and server, or the server alone, provided entropy. A mismatch
may lead to an apparently successful SC recording a bad key.

e Any data used to authorize the issuance of the RSTR, such as the security token pro-
viding client authentication, or credentials presented in the RST.

e The URI and action for the STS. This may matter if different STSs enforce distinct
authorization policies for the same service.

We arrive at the following content for the security context in our model, expressed as a
TulaFale predicate:

predicate sctSC(SC:item,sctid:string,sckey:bytes,mode:string,
UserToken,StsInfo:item,appTo:string,extra:item) : —
SC =<SecurityContext>
<Identifier>sctid</>
<Key>base64(sckey)</>
<Base>UserToken</>
<STSInfo>StsInfo</>
<AppliesTo>appTo</>
<EntropyMode>mode</>
<ExtralInfo>extra</></>.

Crucially, the security context records information on the identity of the three principals
involved: <Base> records the token for the client; <STSInfo> records the URI and token
for the STS; <AppliesTo> records the URI for the service.

5.3.4 Modelling and Verifying Uses of WS-Trust

We present our model of a single RST/RSTR exchange, such as the first exchange of the
protocol depicted in Figure 5.2. The goal of the exchange is to ensure agreement on a shared
security context. We first describe the exchange, detailing our implementation of principals
and the processing of RST and RSTR envelopes, then we state our main theorems for the
resulting script, verified using the TulaFale and ProVerif tools. For simplicity, we only pro-
vide a few exemplary excerpts of the script—we refer the reader to ssws—-trust.tf for
complete definitions.

Mapping Principals to TulaFale Processes

A basic RST/RSTR exchange consists of two messages exchanged between a client and an
STS process, as depicted in Figure 5.3. The goal of the exchange is for the two processes to
establish and agree on an SC with a fresh identifier sctid and shared key sckey. This agree-
ment is achieved in two steps. After the RST message has been accepted, the client and STS
agree on a partial SC that consists of all the elements of the SC except <Identifier>,
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Figure 5.3: Establishing a secure context in entropic mode

<Key>, and the STS token (within <STSInfo>), which are undetermined at this stage.
After the RSTR message is accepted at the client, both processes agree on the full estab-
lished SC. In the rest of this section, we describe how the two processes construct and check
messages to achieve this agreement.

To begin with, both processes know kr, the public key of the CA used to check the validity
of public key certificates, and share the trusted database of principal secrets.

In our exchange, each envelope embeds a globally unique identifier; its structure is rep-
resented by the predicate uid; it consists of a freshly generated message identifier, id, and a
public timestamp, t. This identifier is typically used to protect against message replays.

The process Client represents an instance of a SOAP client sending RSTs and processing
RSTRs on behalf of a user. Each run is in one of two operation modes: either entropic mode,
where the client provides entropy for the security context, or non-entropic mode, where it
does not. In both modes, the server provides entropy. (We do not model a third mode, allowed
by the specification, where the client alone provides entropy.) Figure 5.3 depicts a typical
run in entropic mode. In both modes, the attacker initializes the client process by sending it
a PartialSC that provides the parameters for a new security context, including the name of
the user and the URIs for the STS and service. The client then retrieves the user record U
from the trusted database (see Section 5.2) and constructs an RST message corresponding
to PartialSC. A user record contains either a username and password or an X.509 certificate
and its associated private signing key. The RST message has a unique identifier, rstUid, and
in entropic mode, it also contains a fresh client-generated value, clientEntropy.

The process STS represents an STS server. It first retrieves a server principal record
Sts, containing a URL address uriSTS, an X.509 public-key certificate certSTS, and the
associated private signing key skSTS. When it receives an RST, it also retrieves the principal
record U for the client. The trusted database thus represents all authorized clients of the
STS. After checking the RST, the STS process generates a new security context with fresh
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identifier sctid and the received parameters PartialSC. It generates its own stsEntropy and
uses it to compute the shared sckey associated with this context. It then returns an RSTR,
uniquely identified by rstrUid, containing the sctid and stsEntropy to the client.

The server entropy in the RSTR, and, in entropic mode, the client entropy in the RST, are
encrypted and then signed, as in the WSE implementation [146].

The intentions of and the agreement between the client and STS are recorded using begin
and end events, as follows. Before sending the RST, the client records its proposed security
context as the event begin C1. After checking the RST, the STS indicates its acceptance
of the proposed context as the event end C1. Similarly, before sending the RSTR, the STS
records the established security context as begin C2, and after checking the received RSTR,
the client indicates acceptance of the context with end C2.

The correspondence assertion C1 after the first message requires that the client and STS
processes agree on the values of the proposed parameters PartialSC, the rstUid, and the
clientEntropy:

C1 = (PartialSC,rstUid,clientEntropy)

Including rstUid in C1 enables replay detection: if the STS process were to further ensure
that it never accepts two RSTs with the same Uid, then agreement on C1 implies that each
message sent by the client is accepted at most once by the STS process.

The correspondence assertion C2 after the second message requires that the client and
STS processes agree on the full established SC and the unique identifiers of both messages
(again to enable replay detection).

C2 = (SC,rstUid,rstrUid)

We say that a principal is a client, STS, or server in C1 (or C2) if it is recorded under the
corresponding role in the security context PartialSC (or SC). For instance, we say that C1
has a safe client if the principal recorded in the Base field of PartialSC is safe.

Processing the RST and RSTR Envelopes

In our exchange, the SOAP envelope that carries the RST has a header consisting of a mes-
sage identifier, <To> and <Action> elements designating an STS for issuing an SCT, and
a <Security> element that itself consists of a timestamp, a token identifying the client,
and a digital signature. This structure is expressed as a predicate:

predicate envRST(env,rst:item,uriSTS,id,t:string,Sig,BaseToken:item) : —
env = <Envelope>
<Header>
<MessageId>id</>
<To>uriSTS</>
<Action>"RSTSCT"</>
<Security>
<Timestamp><Created>t</></>
BaseToken
Sig</></>
<Body>rst</></>.
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The client uses this predicate (and others) to assemble an RST envelope; conversely, the STS
uses this predicate to check that a received envelope complies with this structure, as a first
step of its processing. The full processing for the RST envelope at the receiving STS is coded
by the predicate:

predicate isSRSTEnvelope(msgrst:item,kr:bytes,U,Sts:item,
PartialSC,rstUid:item,clientEntropy:bytes) : —
envRST(msgrst,rst,uriSTS,id1,t1,sigl,BaseToken),
EntropicRST(rst,srvURILetok,Extralnfo),
isSTS(Sts,StsInfo,uriSTS,subjSTS,sx,certSTS),
isAsymEncryptedKey(etok,clientEntropy,sx),
1sX509Token(BaseToken,kr,u,a,ck),
isSignature(sigl,"rsashal" ek,
[<Body>rst</><To>uriSTS</><Action>"RSTSCT"</>
<MessageId>idl</><Created>tl</>]),
uid(rstUid,id1,t1),
PartialSctSC(PartialSC,"Bot h",BaseToken,StsInfo,srvURI,Extralnfo).

Here, we depict the clause used to check an entropic RST signed using a user’s X.509 public-
key certificate. The script contains similar clauses for checking the other cases, and it defines
a symmetric predicate for preparing RST envelopes on the client side.

This predicate takes as input the received envelope (msgrst) and checks it using the public
key of the CA (kr) and the principal records for the user (U) and for the STS (STS). It
then extracts as output the proposed context PartialSC, the unique identifier rstUid, and the
received clientEntropy.

The predicate first parses msgrst calling envRST, extracting the rst, the relevant header
fields, the message signature sigl, and the user’s authenticating BaseToken. It then calls
isEntropicRST to parse the rst and retrieve etok, which contains the encrypted clientEntropy,
checking that it contains a fragment URI BaseTokenld pointing to the user’s BaseToken.
The predicate isSTS checks that the STS record Sts has a uriSTS that matches the <To>
header of the RST, and extracts the certificate certSTS and private key sx corresponding to
the STS. This private key is used to decrypt etok to retrieve the clientEntropy. Then, the
predicate isX509TokenPub extracts the user’s public key from BaseToken and the predicate
isSignature checks that the corresponding private signing key has been used to generate the
message signature sigl, and that sigl covers the message body and all the parsed header ele-
ments. Finally, the predicates uid and PartialSctSC construct the outputs rstUid and PartialSC
embedded in C1.

The SOAP envelope carrying RSTRs has a similar structure to the RST envelope, ex-
pressed in the following predicate:

predicate envRSTR(msgrstr:item,rstr:item,id2:string,t2:string,
STSToken:item,sig2:item,rto:string) : —
msgrstr = <Envelope>
<Header>

<Messageld>id2</><RelatesTo>rto</>
<Action>"RSTRSCT"</>

<Security>

<Timestamp><Created>t2</></>
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STSToken
sig2</></>
<Body>rstr</></>.

The main difference is that the <To> header is replaced with a <RelatesTo> header that
contains the message identifier of the RST being responded to.

Both the creation of RSTRs at the service and the corresponding checks at the client are
again expressed as symmetric predicates.

Authentication and Secrecy Results

As described in Section 5.2, our full TulaFale script models our system as an explicit pi
calculus process consisting of an unbounded number of clients and STSs running in parallel
and willing to communicate over a public channel, under the control of the attacker, for any
choice of operation modes.

Although the opponent is powerful, our theorems assert that the RST/RSTR exchange
preserves our authentication, correlation, and secrecy goals. The authentication and correla-
tion goals are stated in terms of the correspondence between begin and end events generated
by client and STS processes; the attacker cannot generate events.

Theorem 5.3.1 (Robust Safety of C1, C2). For all runs of script ssws—trust.tf in the
presence of an active attacker, we have:

e For each end CI event with a safe client, there is a matching begin CI event.

e For each end C2 event with a safe client and a safe STS, there is a matching begin C2
event.

Hence, the exchange guarantees that any RST envelope from a safe client, accepted by
a safe STS, and used to allocate a secure context actually corresponds to a genuine request
with matching parameters.

Secrecy is stated in terms of the attacker’s knowledge of the established session key.

Theorem 5.3.2 (Session-Key Secrecy). For all runs of script ssws—trust.tf in the pres-
ence of an active attacker, for each begin C2 with safe client and STS, the Key element
recorded in SC remains secret.

Hence, even if the service immediately uses the SC key to encrypt messages, at most the
client who signed the RST may decrypt those messages. Combining the two theorems, this
also holds once the client issues a matching end C2 and starts using the SC key. In addition,
we have checked that the result holds even if, in entropic mode (that is, where both client and
server provide entropy), one of the participants uses a value selected by the attacker instead
of a fresh value as its entropy.

As a corollary, if both the client and the STS are safe and the client completes the ex-
change, then the two parties agree on an SC containing a shared, secret key.

These results are automatically proved by running TulaFale on script ssws—-trust.tf.
In addition to security properties, we also check a series of basic functional properties, check-
ing for instance that the protocol can successfully complete for each choice of mode and safe
principals.
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5.4 Web Services Secure Conversation Language

WS-SecureConversation “defines mechanisms for establishing and sharing security contexts,
and deriving keys from established security contexts (or any shared secret)” in order to secure
series of messages [116]. We survey the specification, and in particular focus on the new
security tokens it introduces.

5.4.1 Tokens for Contexts and Key Derivations

WS-SecureConversation introduces two new kinds of security token: SCTs and DKTs.

A security context token (SCT) in the security header of an envelope represents (an ab-
stract pointer to) a shared security context (SC), typically established using an RST/RSTR
exchange, as described in previous sections. The SCT simply embeds a context identifier,
so that the recipient can access the relevant context, notably the authenticated identity of the
sender. Local references to the SCT can appear in the envelope whenever a symmetric key is
needed, to indicate that the recipient should read the key from the SC. In our scripts, we use
the following structural predicate for SCTs:

predicate SCT(sct:item,sctid:string): —
sct = <SecurityContextToken><Identifier>sctid</></>.

A derived key token (DKT) provides a reference to a master key, an algorithm, and ad-
ditional parameters to compute a separate key. For instance, a typical DKT embeds a fresh
nonce and a reference to an SCT, and thereby indicates that the recipient should compute a
derived key as the hash of that nonce keyed with the SC key. Such DKTs may be used to
secure independent requests relying on the same SC, or to derive distinct keys for encryption
and for authentication.

In our scripts, we use the structural predicate DKSCT to decompose DKTs that refer to
SCTs and the predicate deriveKey to compute the associated key:

predicate DKSCT(dksct:item,sctid:string,nonce:bytes): —
dksct = <DerivedKeyToken>
<SecurityTokenReference>
<Reference>sctid</>
<valueType>"SCT"</></>
<Nonce>base64(nonce)</></>

predicate deriveKey(dk:bytes,key:bytes,nonce:bytes): —
dk = pshal(base64(key),concat(utf8("WSSecureConversation"),nonce)).

In general, the parent token need not be an SCT; instead one can use, for example, a
Kerberos token, or even another DKT. WS-SecureConversation also supports other variants
of key derivation, a lightweight derived-key mechanism that provides the same functionality
as a DKT within a key reference, and some SCT propagation and amendment mechanisms.
We do not model these advanced mechanisms in this chapter.

5.4.2 Modelling and Verifying Uses of WS-SecureConversation

Continuing with the example of Figure 5.2, we now consider exchanges between a client and
a service following the completion of an RST/RSTR exchange, as modelled in Section 5.3.4.
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The security goals of these exchanges are to achieve mutual authentication between client
and service, to ensure message correlation between requests and responses, and to preserve
the secrecy of all message bodies. We first model a single request/response exchange, before
generalizing our results to “open-ended conversations” comprising arbitrary sequences of
exchanges.

A typical run of the protocol is depicted in Figure 5.4 (but disregard the dashed lines for
now). It involves a process Client that sends a request to a web service using an existing
security context and waits for a response, and a process Service that handles such requests,
for some given address and SOAP action (srvURILsrvAC).

Mapping Principals to TulaFale Processes

When considering each envelope in this protocol, we use an abstract parameter, DestInfo, to
represent the concatenation of some WS-Addressing [60] headers included in the envelope.

First, the client inputs from the attacker a Request envelope that provides a security con-
text identifier sctid, a timestamp t, and target service information srvURI and srvAC. The
client then fetches from the SC database a security context that matches sctid, if any, and
extends the Request envelope by adding a fresh message identifier and a secret request body.
(Hence, Request is an envelope with some DestInfo that includes headers containing the
request message identifier and target service information.)

In addition, the attacker can also choose between two operation modes: either securing
the request with the shared SC key, or securing it with fresh keys derived from the SC key.
These key-derivation details are recorded in an element, RequestMode, which contains either
two nonces used to derive keys for encryption and signature, or a constant indicating that the
SC key is directly used.

As in Section 5.3.4, our processes issue events that record their intent: before sending the
request, the client emits begin C3; after receiving the request and checking its validity, the
web service records the acceptance by emitting end C3. These events record the following
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data:
C3 = (SC,Request,RequestMode)

After accepting a request from a client, the service similarly prepares a Response contain-
ing a response body and some addressing headers: DestInfo now includes headers echoing
the server address srvURI and the request identifier, plus a header containing a fresh response
identifier. For simplicity, the service uses the same operation mode as the client: if the re-
quest used derived keys, so does the response. The corresponding key derivation details are
recorded in ResponseMode.

Before sending its response, the service emits begin C4. After checking the validity of
the response, the client emits end C4. These events record data for both the request and the
response:

C4 = (C3,Response,ResponseMode)

where C3 includes data on the request, and Response and ResponseMode include data on the
response.

Next, we describe the structure and processing of envelopes that effectively protect these
requests and responses.

Processing Request and Response Envelopes

Since the request and response envelopes are processed similarly, we use generic predicates
for both purposes. When using derived keys, the structure of these SOAP envelopes is given
by the predicate:

predicate isEnv(Env:item,DestInfo:items,t:string,sig,ebody:item,
sctid:string,mode:item) : —
Env = <Envelope>
<Header>
<Security>
<Timestamp><Created>t</></>
sct dksctEnc dksctSig
sig</> @
Destlnfo </>
<Body>ebody</></>,
SCT(sct,sctid),
DKSCT(dksctEnc,sctid,EncNonce), DKSCT(dksctSig,sctid,SigNonce),
derivedKeyMode(mode,EncNonce,SigNonce).

The structure of the envelope differs from those of Section 5.3.4 in three ways:

e the envelope includes a security context token (sct) and two derived key tokens (dksctEnc
and dksctSig) used to indicate keys for encryption and signing;

e the envelope includes a generic parameter (DestInfo) that provides headers specific to
requests and responses;

e the envelope includes an encrypted body (ebody).
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After setting the structure of the envelope, the isEnv predicate inspects the SCT and
DKTs, in order to return an SC identifier (sctid) and a mode descriptor embedding the two
nonces used for key derivation (EncNonce and SigNonce).

We now give a predicate used for validating incoming envelopes: requests for the service,
and responses for the client.

predicate isMessage(Env,SC,Envelopelnfo,mode:item) : —
isEnv(Env,DestInfo,t,sig,ebody,sctid,mode),
sctSC(SC,sctid,sckey,entropyMode,UserToken,StsInfo,appTo,extra),
computeKeys(mode,sckey,EncKey,SigKey),
isEncryptedData(ebody,body,EncKey),
body = <Body>b</>,
EnvInfo(Envelopelnfo,t,sctid,DestInfo,b),
isSignature(sig,"hmacshal",SigKey,

[<Body>ebody</> <Created>t</> @ Destlnfo ]).

In the predicate, isEnv parses the envelope, extracting DestInfo and other sub-elements.
Next, predicate sctSC checks sctid against the security context SC and then retrieves the
security context key sckey. Predicate computeKeys uses that key and the two nonces passed
in mode to compute the keys EncKey and SigKey protecting the envelope, as explained in
Section 5.4.1. EncKey is then used to decrypt the message body, whereas SignKey is used
to verify a signature binding the encrypted message body, a timestamp, and the addressing
headers. Finally, information extracted from the envelope is returned in Envelopelnfo.

Authentication and Secrecy Results

The following theorem establishes the agreement, message correlation, and secrecy proper-
ties for the exchange described above. Its proof is obtained by running TulaFale.

Theorem 5.4.1 (Robust Safety of C3, C4 and Secrecy). For all runs of script
ssws—secconv.tf in the presence of an active attacker, we have:

e For each end C3 with a safe security context, there is a matching begin C3.
e For each end C4 with a safe security context, there is a matching begin C4.

e For each exchange with a safe security context, the request and response bodies are
kept secret.

Open-Ended Conversations

We now extend our protocol to allow clients and services to iterate their exchanges—as sug-
gested by the dashed lines of Figure 5.4—thus modelling a more substantial conversation.
For simplicity, we fix the operation mode and always use derived keys.

Each session is identified by a sessionld string, freshly generated by the client before
sending its first request. Within the session, each request is indexed by a sequence number.
To this end, we (mostly) comply with the syntax of WS-ReliableMessaging [91] and use its
simple request acknowledgment mechanism: requests carry a <Sequence> header, includ-
ing the sessionld and a message number n, set to zero by the client in the first request, and



Section 5.5. Application: Interoperability Scenarios 109

incremented by one in every subsequent request. The structure of this header is given by the
predicate:

predicate sequence(Sequence:item,sessionld:string,msgNumber:string): —
Sequence = <Sequence>
<Identifier>sessionld</>
<MessageNumber>msgNumber</></>.

Similarly, responses carry a <SequenceAcknowledgement> header echoing the re-
ceived sessionld and message number.

To specify an agreement on the conversation as a whole, our client and service collect
detailed information in events, as follows. For the n-th request and response, respectively,
C3n and C4n record as history H not only the envelope just sent (Req,, for begin events)
or accepted (Resp,, for end events), but also the preceding sequence (denoted using paren-
thesis and spaces between elements) S=[Resp,,_1 Req,—1 - - - Respg Reqp] of all previously-
processed envelopes for the session. Thus, for C3n, the recorded history is H=[Req,, @ S]
(here @ denotes concatenation) while for C4n the recorded history is H’=[Resp,, Req,, @ S].
C3n and C4n also record the shared session identifier sessionld, the message number n of the
last exchange, and the security context SC (which provides in particular client and service
identification).

C3n = (SC,sessionld,H,n)
C4n = (SC,sessionld,H’,n)

To establish the correspondences, we use a script that protects the service from replays of
initial requests with identical session identifiers. (This is necessary because the server does
not contribute to the generation of the session identifier, and thus could be lead to run several
sessions for a single client session.)

Theorem 5.4.2 (Robust Safety of C3n, C4n and Secrecy). For all runs of ssws—-secrm.tf
in the presence of an active attacker, we have:

e For each end C3n with a safe security context, there is a matching begin C3n.
e For each end C4n with a safe security context, there is a matching begin C4n.
o All request and response bodies protected by a safe security context remain secret.

The proof is shown in Appendix A.2; it uses the script ssws—secrm. t £ for the iterated
protocol. It also relies on a similar, but slightly more abstract script, ssws—-secrm-a.tf,
in which sequencing is also controlled by the environment. We use ProVerif on both scripts
to establish a series of correspondences. We then manually combine these properties by
reasoning on the structure of these scripts, relying on standard proof techniques for the pi
calculus [23, 50].

5.5 Application: Interoperability Scenarios

We finally consider the working scenario described in the WS-Trust/WS-SecureConversation
interoperability (’interop’) workshop [166]. In contrast with specifications, this scenario pro-
vides a concrete protocol, used as a common test case for comparing implementations from
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Figure 5.5: The WS-Trust/WS-SecureConversation Interop Scenario

six different vendors (IBM, Lanka Software Foundation (Apache), Microsoft Corporation,
Oblix, Inc, Systinet Corporation, and Virtusa Corporation (Apache)) !.

The scenario is outlined in Figure 5.5; it involves four roles—a client C, a SAML server,
an STS server, and a web service S—and a series of exchanges initiated by the client:

e An RST/RSTR exchange with the SAML server, to obtain a token. This exchange is
protected at the transport layer, using SSL.

e A second RST/RSTR exchange with the STS server. This exchange is protected using
WS-Security, relying on the SAML token. The outcome of the exchange is a security
context shared between the client and the target service.

e One or several exchanges with the service, protected using WS-Security and WS-Secu-
reConversation relying on the shared SC.

As a formal counterpart, we apply the TulaFale models developed in the previous sec-
tions to this scenario, in order to verify a series of authentication properties. We reuse the
processes and predicates of Section 5.3 to represent the two RST/RSTR exchanges, and those
of Section 5.4 to represent the final exchange.

We spent a couple of weeks to model and verify this scenario (including extensions of
our library to support SSL and SAML as required in the scenario). We believe this verifi-
cation effort is comparable to the coding and testing of the scenario for an existing target

This information has been gathered from the website http: //msdn.microsoft.com/webservices/
community/workshops/TrustWorkshopOct2004.aspx.
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implementation of web services. Besides, our specification of target security properties for
the scenario should be of interest for testing. We found several flaws in earlier versions of
the scenario, although not in its latest version.

5.5.1 Simple Models for SSL and SAML

We model SSL and SAML tokens only as required in the scenario.

The SAML token enables client authentication, and also sets up a shared secret between
the client and the STS server. Suppose that our client C has subject name u, and our SAML
server has an asymmetric private key sT to sign tokens targeted to the STS server with asym-
metric public key ka. Then, a SAML token s with distributed secret k is built by the following
predicate. (The secret key k is computed with client entropy and server entropy, much as in
Section 5.3.4.)

predicate Saml(s:item,sT:bytes,u:string,ka,k:bytes) :—
mkAsymEncryptedKey(ekey,k,ka),
auth = <AuthenticationStatement>
<Subject><NameIdentifier>u</></>
<SubjectConfirmation><KeyInfo>ekey</></></>,
mkSignature(sig,"rsashal" sT,[<SamlAssertion>auth</>]),
s=<SamlAssertion>
auth sig
</>.

First, in predicate mkAsymEncryptedKey the secret key k is encrypted with the public
key of the target STS server ka, to obtain an encrypted key ekey. Then an auth item is created
containing the encrypted key ekey and the subject user name u. Then, the auth item is signed
with the private key of the SAML server, sT. Finally, the SAML token s consists of the auth
item and the corresponding signature.

Section 5.3.4 presents an RST/RSTR exchange where the token provided is a security
context token SCT. In this stage of the interop scenario, the RST/RSTR exchange is similar,
only that instead of exchanging an SCT we exchange a SAML token. Also, the RST/RSTR
exchange is protected using SSL, modelled as follows.

SSL [96] protects SOAP envelopes as a whole, irrespective of their contents (including
any embedded SOAP-level principal identifier or password). Hence, in the scenario, SSL
connects an anonymous client to a server associated with a public-key certificate. We model
this connection simply by letting the client C generate a symmetric key symk, pass it en-
crypted under the SAML-server public key, and use that key for encrypting the first RST and
RSTR envelopes. For instance, our SAML server retrieves obtains the first RST envelope
env from the encrypted message msg using predicate:

predicate isSSLRequest(msg,ek,symk:bytes,env,S,serverToken:item) : —
1sX509(S,_,cert,sT,kr),
x509Token(serverToken,cert),
cl4n(<SSLKey>base64(symk)</>) = decrsa(sT,ek),
cl4n(<SSLRequest>env</>) = decaes(symk,msg).
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The SAML server has an X509 certificate cert with a corresponding private key sT. Using
sT the server can decrypt the encrypted key ekey and obtain symk, with which the envelope
env is encrypted.

5.5.2 Authentication Results

As in the previous sections, any number of principals may be involved in parallel runs of
the scenario, and they systematically record their view of the run using correspondences.
For a given run of the protocol, the client records begin I1 before sending the first RST; the
SAML server records end I1 after receiving and accepting a first RST, then records begin 12
before sending back the first RSTR; .. .; finally, the client records end I6 after receiving and
accepting the service response. The contents of the six correspondence sets our authenticity
expectations for this scenario, as follows:

I1 = (partialSamISC)

12 = (SamISC)
I3 = (partialSctSC)
14 = (SctSC)

IS5 = (SctSC,Request)
16 = (SctSC,Request,Response)

In these correspondences, the various SC elements record agreements at each stage of the
protocol. Their content for the interop scenario extend the one described in Section 5.3.3; it
includes for instance a tag that indicates whether SSL or WS-Security is used to secure the
agreement, and additional details on the keys and the issued tokens.

In particular, the name of the client principal is recorded as part of the Base token in
all these SCs: first in a username token in partialSamISC and SamISC; then in the SAML
token associated with SamlSC in partialSctSC and SctSC. The URI of STS server is also
recorded: first as the target AppliesTo field in partialSamlSC and SamISC, then in STSInfo
in partialSctSC and SctSC. Finally, Request and Response record authenticated envelope
contents and their correlation, as described in Section 5.4.2.

For this section only, we adapt our notion of client safety as follows: a client principal is
unsafe when (1) any of its secrets has been leaked to the attacker, or (2) it has contacted any
unsafe SAML server. Hence, client safety now also depends on SAML server safety. (Using
TulaFale, we easily check that our properties do not hold if, instead, we request only that the
SAML server contacted for the session be safe, as the client may have sent its password to
another, unsafe SAML server during a prior session. That is a well-known shortcoming of
SSL as used in this scenario.)

The complete script is wstrust-secconv-interop.tf. By running TulaFale, we
establish the following properties:

Theorem 5.5.1 (Robust Safety of 11-16). For all runs of the script in the presence of an
active attacker:

e For each end 11 event with a safe client, there is a matching begin 1 event.

e For each end I2 event with a safe client, there is a matching begin I2 event.
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e For each end I3 event with a safe client, there is a matching begin I3 event.

e For each end I4 event with safe client and STS server, there is a matching begin 14
event.

e For each end 15 event with safe client and STS server, there is a matching begin I5
event.

e For each end 16 event with safe client, STS server, and service, there is a matching
begin 16 event.

5.6 Conclusions

The mechanisms of WS-Security allow the creation of complex web service security pro-
tocols, whose detailed analysis can become more difficult than standard protocols (like the
ones studied in the previous chapter). Moreover, on top of the standard WS-Security spec-
ification, the WS-Trust and WS-SecureConversation specifications add complexity, as now
the web service protocols may consist of many exchanges between several different parties.
For example, in the Interop protocol of Section 5.5 the client first establishes a SAML token
with a SAML STS, then negotiates a security context with an SCT STS and finally the client
performs a conversation with the web service.

The language TulaFale allows for an elaborate description of these protocols, due to
its powerful constructs and XML support. As already mentioned, TulaFale compiles to an
intermediate pi calculus language that can be automatically analysed by the ProVerif ana-
lyzer [55]. Differently to the constraint solving procedure presented in Chapter 2, ProVerif
is a semi-decision procedure that may not always converge. This is expected since TulaFale
allows the specification of environments consisting of an unbounded number of participants,
which turns the security problem undecidable as discussed in the Introduction. (The proce-
dures of Chapter 2 always terminate and give an answer since the considered system sce-
narios are finite). Still, all the example protocols considered in this chapter converge in
ProVerif, except for the case of open-ended sessions. However, even in this case we still
benefit from the usage of the automatic analyzer, as follows. From the concrete (open-ended)
protocol, we build a more abstract protocol which converges in ProVerif. We then use the
abstract protocol to establish some properties, and then manually relate the abstract protocol
to the concrete protocol to establish the desired properties (for details, see Appendix A.2).
This proof strategy, i.e. of mixing manual and automatic proofs, is useful and scales well,
something indispensable since as protocols get more complex many parts can be left to the
analyzer to prove automatically, while other parts can be established by hand (this strategy
has already been used successfully by Abadi, Blanchet and Fournet for the JFK protocol [22]
and by Abadi and Blanchet for a protocol for certified mail [21]).

Our study of the WS-Trust and WS-SecureConversation specifications complements the
ongoing work to author and refine the WS-Trust and WS-SecureConversation specifications,
to develop implementations, and to test conformance at interoperability workshops. Our pos-
itive results concerning secrecy and authenticity (i.e. Theorems 5.3.1, 5.4.1, 5.4.2 and 5.5.1)
within a formal threat model increase confidence in particular uses of the specifications.
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Related Work There are by now many implementations of SOAP and XML security, but
there is comparatively little work on formalizing the resulting security properties. Damiani
et al [76] show access control properties for SOAP-based web services, relying on an un-
derlying secure channel such as SSL/TLS. Gordon and Pucella [103] prove authentication
properties of SOAP-based security protocols, but do not consider key establishment and do
not model XML syntax in detail. Kleiner and Roscoe [119] construct abstract descriptions
of some simple WS-Security protocols from XML message sequences, so as to analyze the
abstractions with the FDR model checker.

Other formal work on web services protocols includes a model of Atomic Transac-
tion [114].



CHAPTER 6

Relating Analysis Models

6.1 Introduction

As mentioned in the Introduction, analysis models for security protocols can be formally
related in fruitful ways. This chapter is an example of such a relation.

The models presented in the previous chapters are based upon the Dolev Yao attacker
model, in which the exchanged messages of the protocol are modelled as formal expres-
sions of a term algebra (see e.g. Table 2.1 (left) of Chapter 2 and Table 4.1 of Chapter 4).
The (cryptographic) operations, such as message pairing and encryption, are modelled as
term constructors. In this setting, an adversary and its abilities can be modelled in terms
of the messages the adversary knows (see e.g. Table 2.1 (right)). Furthermore, the security
properties a protocol is supposed to achieve are also modelled formally (e.g. PS-LTL of
Section 2.5). In these chapter we refer to these analysis models as the formal models.

Besides formal models, other analysis models have been developed within the crypto-
graphic community, known as computational models [43]. In these models, messages are
considered to be (more realistically) bit-strings, while cryptographic operations are seen as
functions over these bit-strings. Here, an adversary is modelled as any efficient algorithm,
while the security properties of a cryptographic protocol are defined on terms of the proba-
bility of the adversary to perform a successful attack [98]. The two models are illustrated in
Figure 6.1.

Both of the two above models have advantages and disadvantages. On the one hand,
the formal model allows to reason about cryptographic protocols more easily and generally.
However, such benefits arise from the adoption of fairly strong assumptions (such as freeness
of the term algebra, and fixing the adversary model). On the other hand, the computational
model, by considering messages as bit-strings and modelling the adversary as any efficient
algorithm, provides a more realistic model and thus offers more convincing security guaran-
tees. However, proving protocols correct in the computational model is more difficult and
less general than in the formal model.

In the work of Abadi and Rogaway [27], it is shown that if two formal expressions are
similar to a formal adversary, then their corresponding computational interpretations, repre-
sented as bit-strings in the computational model, are also indistinguishable to any computa-
tional adversary (the attacker is considered to be passive). This is the soundness arrow of
Figure 6.1 (for the completeness part, see below in the related work). This result comprises
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Figure 6.1: Relating formal analysis models and computational analysis models

a very important step into relating the formal and computational model.

Composed Keys. Abadi and Rogaway [27] model formal encryption by using atomic keys:
that is, a formal expression { M } .- represents encryption of message M with key K, where
M is again a formal expression and K is an atomic symbol representing the cryptographic
key. However, considering only atomic keys in encryption is not sufficient, and sometimes
we need to be able to allow encryption with composed keys, representing non-atomic, con-
structed keys. In that setting, the formal language would need to be able to consider expres-
sions of the form {M } ;, where both M and N are expressions. Considering composed keys
as possible encryption keys is important due to that, in protocol design, it is fairly common
to construct symmetric keys from shared secrets and other exchanged data as part of the pro-
tocol run. Examples of this can be found in the work of Gong [100], and, more recently,
in a proposed protocol for achieving private authentication [19], which we study on Sec-
tion 3.6.2. Moreover, many “real-world” cryptographic protocols use composed keys —see,
for example SSL 3.0 [95].

Section 6.3 defines a computational interpretation [-] for the operation {M } ;. Briefly,
the interpretation [{M} 5] consists of encrypting [M] — the interpretation of M with a
key obtained by applying the random oracle to [N]. So, the interpretation of {M}, is
quite intuitive. On the other hand, this forces us to use the random oracle model as the
computational model. Using a random oracle seems to be necessary, since otherwise the
goodness of keys might be questioned, as well as the independence of different keys.

We also define a relation = over formal expressions and, as the main contribution of this
chapter, we show that M = N implies the computational indistinguishability of [M] and
[N].

In the context of the present thesis, this chapter is important since reestablishing the
soundness result of Abadi and Rogaway for the case of composed keys allow us to cover our
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constraint solving approach of Section 2, which supports encryption with non-atomic keys
explicitly.

Related Work. The work of Abadi and Rogaway [27] was later extended in Abadi and Jiirjens
[26] and Laud [125]. In these works, similar soundness results were obtained for richer
formal languages, where instead of considering values of formal expressions, it is dealt with
outputs of programs. However, differently from the formal language presented in this section,
both of these extended languages still treat the encryption operation as using atomic keys.

Micciancio and Warinschi [145] considered the converse of the soundness result (i.e.,
completeness of the formal language of [27]). In their work, it is shown that a completeness
result can be obtained by considering a stronger encryption scheme, namely an authenticated
encryption scheme.

Further extensions of the seminal work [27] deal with encryption cycles in expressions.
For instance, the expression { K } - contains a trivial cycle: key K is immediately encrypted
with itself. In the computational model, the security of a traditional encryption scheme can
be compromised if an adversary gets hold of a message containing an encryption cycle. Thus,
in the original work of Abadi and Rogaway, formal expressions were restricted to be cycle
free. However, further work of Black et al. [54] and Laud [126] has shown that, in fact, this
discrepancy can be addressed in two different ways: either by considering a new, stronger
security definition of the encryption scheme [54], or by strengthening the adversary model of
the formal model, such that it can be able to “break” encryption cycles [126].

Several papers from the literature (see e.g. [41, 113]) continued exploring the relation
between formal and computational models, and this is becoming an active area of research.
This is evidenced, for example, by the recent organization of a workshop dedicated specif-
ically to this topic (the “Workshop on the link between formal and computational models”,
Paris, June 2005).

Finally, Bellare and Kohno [44] have studied the security of cryptosystems against related-
key attacks and also provided a construction of a secure cryptosystem against a certain kind
of such attacks. Related keys are different from composed keys — a related key is some-
thing that is constructed from an already existing good key and some non-key data, whereas
a composed key is constructed from non-key data only.

In Section 6.2 we present the formal language. Then, in Section 6.3 we introduce some
basic notions of the computational model that are needed in the sequel, and also present an
algorithm for translating formal expressions into computational [distributions of] bit-strings.
In Section 6.4, we introduce an equivalence relation =2 over formal expressions. This equiv-
alence relation = is elaborated and illustrated with some examples in Section 6.5. After that,
in Section 6.6 we present the main contribution, a soundness result that relates the formal
and computational models. Finally, Section 6.7 concludes the chapter.

6.2 Expressions and Patterns

Let Bool be the set {0,1} and let Keys be the set of formal keys — this is a fixed, infi-
nite set of symbols. Intuitively, elements of Keys represent cryptographic keys. Also, let
Rnd be the set of formal random numbers — again a fixed, infinite set of symbols disjoint
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from Keys. The use of Rnd is needed since usually some of the constructors of formal
expressions (such as encryption) represent probabilistic operations. This means that if such
an operation is executed twice, even with the same arguments, the results will be different.
Thus, the elements of Rnd are used to keep track which subexpressions of an expression
represent the same invocation of that operation and which subexpressions represent different
invocations. Our set of formal expressions Exp is defined by the following grammar:

M,N == b (bit)
| K (key)
| (M,N) (pair)
| {M}y (encryption) .

Here, b € Bool, K € Keys and r € Rnd. Clearly, we can see that composed keys
are allowed in the encryption operation. As the labels r are identifiers of invocations of the
encryption algorithm, we demand that whenever we consider two expressions { M}’ and
{M'}%;, with the same label r, then also M = M’ and N = N'.

Even though Abadi and Rogaway [27] did not use formal random numbers, they assumed
that each occurrence of the encryption constructor represents a different invocation of the
encryption operation. Furthermore, the later work of Abadi and Jiirjens [26] considered a
richer language in which they also needed to keep track of different invocations. This was
done, similarly to the present work, by using formal random numbers.

Let us define some notation related to the structure of formal expressions. The subex-
pression relation C is the smallest reflexive transitive relation over Exp containing M C
(M,N), NC (M,N),M C {M}% and N C {M}} forall M, N € Exp and r € Rnd.
For an expression M, we denote:

keys(M) .= {K € Keys : K C M}
rns(M) :={r € Rnd : {N'}} € M for some N', N € Exp}
atoms(M) := keys(M) U rns(M)

We call the elements of atoms(M) the atoms of M.

Intuitively, a formal pattern describes what an adversary is able to see when looking at an
expression. The elements P, Q) of the set of formal patterns Pat is defined by the following
grammar:

PQ == b (bit)
| K (key)
| (P,Q) (pair)
| {P}g (encryption)
| O (undecryptable) .

Here, (1" denote ciphertexts that are encrypted with a key that the adversary does not know,
and thus can not “see” inside. We use formal random numbers to differentiate between these
ciphertexts, and therefore we require that the formal random numbers used at encryptions be
different from formal random numbers used at undecryptables. Now, the relation C, as well
as the functions keys, rns and atoms are extended to Pat. Finally, note that the sets rns(P)
and atoms(P) also contain formal random numbers at the undecryptables.



Section 6.3. Computational Interpretation 119

6.3 Computational Interpretation

In the computational model, an encryption system is a triple of polynomial-time algorithms
(G, &, D) working with bit-strings. Here, G and £ are probabilistic algorithms while D is
deterministic. The key generation algorithm G takes as input the security parameter n, rep-
resented in unary, and returns a new key. The encryption algorithm &£ takes as input the
security parameter, a key and a plaintext and produces a corresponding ciphertext. Since £ is
probabilistic, different invocations of £ may return different ciphertexts. Lastly, the decryp-
tion algorithm D takes as input the security parameter, a key and a ciphertext and returns the
corresponding plaintext.

Let O be a fixed bit-string. We say that the encryption system (G, £, D) is type-0 secure
[27] if, for all probabilistic polynomial-time (PPT) algorithms A()-(") (with interfaces to two
oracles), the difference of probabilities

PrlASA" R EATR I () = 1 g K — G(17)]—
Pr[A£(1",k,O),E(l”,k,O)(ln) =1: k— g(1n>]

is negligible in n. A function is negligible if its reciprocal grows faster than any polyno-
mial. In [27], Abadi and Rogaway showed that type-0 security is achievable under standard
cryptographic assumptions.

Let (G, &, D) be a type-0 secure encryption system, such that the distribution G(1™) is the
uniform probability distribution over {0, 1}*("™), where ¢ is a fixed polynomial. Now, being
type-0 secure guarantees that the algorithm £ is probabilistic, and thus we denote by £* the
invocation of £ with random coin-flips r € {0,1}*. Thus, if we fix r, the algorithm E* is
now deterministic. In the security definition, we assume the uniform distribution of r.

Now, let z be a bit-string. A random oracle R is a machine that, on query (1™, x), first
checks whether it has been queried with the same values before. If this is the case, then it
returns the same answer as before. Otherwise, it proceeds as follows. First, the random oracle
creates, uniformly and randomly, a bit-string y of length m. Then, the random oracle records
the query (1™, z) together with g, and then finally y is returned. In the random oracle model
[45], there is a single random oracle in the world, while all other algorithms and machines are
allowed to query this oracle. To be able to translate a model in the random oracle world into
a real system, the random oracle needs to be replaced with some “random-looking” function
h. Thus, there is a leap of faith involved in applying the results proved in the random oracle
model to a real system. Nevertheless, we can still be sure that if the real system is insecure,
then this must be caused by A not being a good approximation of R.

Now we are ready to give a computational interpretation to expressions and patterns.
With each P € Pat we associate a family (indexed by the security parameter) of probability
distributions over bit-strings. We denote that family by [P]. Figure 6.2 depicts the algo-
rithm sampling the n-th distribution in that family. First, INITIALIZE(1™, P) is run and then
CONVERT(1", P) is invoked.

Note that if Py # P, then if we sample (z, y, “pair”) « [(Py, P2)]», then the probability
for z = y is negligible.

In fact, the existence of the random oracle is itself sufficient for the existence of type-0
encryption systems. In particular, we could have fixed the encryption system, for example, to
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algorithm INITIALIZE(1", P)
forall K € keys(P) do 7(K) — G(1™)
Top < G(1™)
R
for all » € rns(P) do 7(r) € {0,1}*

algorithm CONVERT(1", P)

if Pis K € Keys
return (7(K), “key”)

else if P is b € Bool
return (b, “bit”)

else if Pis (Py, Py)
let z = CONVERT(1", P;)
let y = CONVERT(1", P,)
return (z, y, “pair”)

else if Pis {2},
let z = CONVERT(1", P;)
let y = CONVERT(1", P,)
let = = ET (17, RO 7). y)
return (z, “ciphertext”)

else: Pis "
let z = 7 (1" R(14™ 1), 0)
return (z, “ciphertext”)

Figure 6.2: Algorithm sampling [P]

the one given in [54]. However, we would like to use the random oracle as little as possible
and thus we have not fixed it.

Two families of probability distributions over bit-strings D and D’ are indistinguishable
(denoted D =~ D) if for all PPT algorithms .A, the difference of probabilities

PrlA(1",z) : © < D,] — Pr[A(1",x) : < D]

is negligible in n. In fact, indistinguishability is the computational equivalent of sameness.

6.4 Equivalence Relation on Pat

We would like to define an equivalence relation = over formal expressions (and more gen-
erally, over patterns), such that M = N implies [M] ~ [N]. Similarly to Abadi and
Rogaway, we define a function pattern : Exp — Pat and state M = N iff pattern(M)
and pattern(N) can be obtained from each other by an a-conversion over keys and for-
mal random numbers. Even though we could also define the function pattern similarly to
[27], that is by giving the entailment relation - (this relation describes which formal ex-
pressions the Dolev Yao attacker may obtain from a given expression) and replacing the



Section 6.4. Equivalence Relation on Pat 121

undecryptable encryptions in the expressions by the corresponding “blobs” [, we chose to
give a different equivalence definition. The reason for this is that, if we followed Abadi
and Rogaway, then we would have to assume that the expressions M and N do not contain
encryption cycles. With atomic keys only, an encryption cycle in an expression M is a se-
quence of keys K1, ..., K,,, where K is encrypted under K, (possibly indirectly) for all
1€ {l,...,m—1}and K,, is encrypted under K1, all in the expression M. Even though the
definition of type-0 security does not say anything about the security of encryption cycles; in
systems where the Abadi and Rogaway results can be applied, encryption cycles cannot oc-
cur. However, when considering composed keys, the definition of encryption cycles is likely
much more contrived, because the different parts of the same key have to be kept track of.
Therefore, we avoid defining the encryption cycles at all, and thus our definition of = applies
to all expressions.

Let P,() € Pat. The operation boxq(P) replaces all encryptions of the form {-}7,
occurring in P with undecryptables. Formally, the operation boxq (P) is defined by

boxq(b) = b
bOXQ(K) =K
boxo ((Py, Py)) = (boxg (P1), boxg(P))
or, ifP=Q
b PYh) =
oxq({F2}p,) {{bon(PQ)}gon(Pl), if P #Q

boxo(CI") = O

We are looking for sufficient conditions for [P] & [boxg(P)]. In particular, we are going to
prove that the following is a sufficient condition. Let Tp be the set of all atoms occurring in
P, except that if P has subexpressions of the form {-}{,, then the keys and random numbers
inside that ) do not count. The sufficient condition that we are looking for is atoms(Q) €
Tp. To state this formally, we define the sets B (P) for all P € Pat in the following way:

Bo(b) = 0
Bqo(K) ={K}
Bo((Pr, P2)) = Bo(P1) U Bg(F2)

vy _ J{ryUBq(P), if Pr=Q
Ballrati) = {{T} UBq(P1) UBq(R), ifP#Q

Bo(0") = {r}

and set Tp := Bg(P).

If the above condition is fulfilled we say that P = boxg(P). We also say P = @
whenever () can be obtained from P through some a-conversion applied to its formal keys
and random numbers. Finally, we extend = to an equivalence relation.

Now we are ready to define the function pattern. Let P € Pat. If there exists some
@ € Pat, such that P # boxg(P) (i.e. @ occurs as an encryption key somewhere in
P) and P = boxg(P) then we put pattern(P) := pattern(boxg(P)). Otherwise we put
pattern(P) := P. Itis easy to check that pattern is well-defined. Furthermore, the function
pattern is efficiently computable.
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6.5 Examples

Before going to the proof that equivalence implies indistinguishability of interpretations, let
us see some examples. We are not going to repeat the examples given by Abadi and Rogaway
[27]'. In our examples we intend to illustrate and clarify what constitutes an “encryption
cycle” in an expression and what does not.

. {Kl}leAKz) 2 [O". This is so since the atom K> of the encryption key (K7, K3) does
not occur anywhere else.

o {(Ki, KQ)}ZKI K, 7 D7 This expression is a clear-cut encryption cycle. However,
encryption cycles can be more subtle, as the next two examples show.

o {(K2, K1)}y, 1,y 20"
o (K e ()T e,) 2 (00,0,

. {{K2}%1}EK2}“;§1 % [, but {{K2}E1}EK2}’;§1 = [J". The first example contains an

encryption cycle. The second example, however, does not, because the atom r; of the
key does not occur anywhere else. These two examples show the importance of formal
random numbers.

o ({K1}k, ) K,) 2 (", K3). Compared to the first example, the addition of Ko
means that now all atoms of the encryption key occur somewhere else.

6.6 Correctness

We now present our main result of this chapter, which establishes the soundness of the formal
model w.r.t. the computational counterpart.

Theorem 6.6.1. Ler P,Q € Pat, such that atoms(Q) € Bg(P). Then [P] = [boxg(P)].
Proof. See Appendix A.3. O

6.7 Conclusions

In this chapter we have considered an extension of the work of Abadi and Rogaway [27].
This extension is mainly constituted by considering the use of composed, non-atomic keys
in the encryption operator of the formal language. Briefly, we proceeded as follows: First,
we related formal expressions in our language with an equivalence relation 2. By providing
an intuitive computational interpretation, and then showing that each time two formal ex-
pressions that are equivalent according to =2 are also indistinguishable in the computational
world, we have lifted the work of Abadi and Rogaway [27] to the case of composed keys.

The reader checking out these examples should keep in mind that:

e [27] uses no formal random numbers; each occurrence of the encryption constructor is assumed to have a
different formal random number attached to it;
e in[27], M = N does not imply [M] = [N], if M or N contains encryption cycles.
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As we already mentioned, support for encryption with composed keys is important since
many cryptographic protocols use them [100, 19, 95]. Thus, having the soundness result
for the case of formal encryption with composed keys provides further faithfulness in the
verification results of formal approaches that support composed keys (such as the constraint
solving approach of Chapter 2 and the works [149, 5, 38]).

While giving the computational interpretation, we needed to use the random oracle. Thus,
our approach gives less security guarantees than the original work of Abadi and Rogaway,
based on standard security assumptions. However, we believe the use of the random oracle
is necessary to guarantee the goodness and independence of the constructed keys. Usage
of the random oracle allow us to model the situation in which a user generates keys in a
completely secure manner, which is in accordance with the existing definitions in the com-
putational model. However, in some situations (e.g. when considering composed keys), the
key generation process may not be a so private activity. In this new setting, an adversary
might have some knowledge about the randomness used during the key generation. Further-
more, a stronger and active adversary may even have some control over the key generation
process. We believe it would be interesting to study such a new scenario, where new and
proper definitions (and constructions) would be needed.






CHAPTER 7

Concluding Remarks

In this thesis we study the analysis of security protocols. Our extended analysis models
instantiate (and relate) the Dolev Yao analysis model of the Introduction in several new,
realistic settings, as illustrated in Figure 7.1.

Our primary aim is to develop methods that provide practical, efficient and effective
means to analyse security protocols, that can be readily applied by protocol designers to help
in the development of real-life security protocols.

In this thesis we achieve this aim successfully, allowing us to state, as the main conclu-
sion, that the development of effective analysis models for security protocols is both feasible
in theory and useful in practice. We support this conclusion by describing our explorations,
which span a range of different activities:

e We develop novel automatic procedures to analyse security protocols (e.g. constraint
solving);

e We create novel definitions that model security properties (e.g. definition of guessing
attacks in constraint solving and in the Applied Pi Calculus);

o We show how to cast realistic analysis models within generic formal frameworks (e.g.
the modelling of security protocols in timed automata);

o We formally model industrial specifications (e.g. formalization of session based web
service specifications in TulaFale, and modelling of the OSA/Parlay framework in con-
straint solving);

o We formally relate analysis models and their security proofs (e.g. relations between
the formal and computational models of security).

Each of our methods supports the analysis of existing protocols (both from the literature
and industrial), in some cases uncovering potential vulnerabilities. Furthermore, we also
design novel protocols. We comment on some of these protocols (the complete list is in the
List of Protocols, see the Table of Contents):

o Analysis of guessing attacks for the EPT and EKE protocols. For EKE, we uncovered
a potential vulnerability and proposed a new improved version.
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Figure 7.1: The Dolev Yao analysis model and its extensions (each dashed arrow is
an instantiation) and relation (solid line)
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Contribution Practical Theoretical
Chapter 2 (Constraint Solving)

Section 2.3 (Improved Verifier) Procedure 2.3.4 Theorem 2.3.6
Section 2.5 (PS-LTL) Procedure 2.5.13 Theorem 2.5.15
Section 2.7 (Guessing Attacks) Definitions 2.7.2 and 2.7.4 | Proposition 2.7.5
Chapter 3 (Timed Analysis)

Sections 3.2-3.4 TA model checking

Section 3.5 Literature Taxonomy (n.a.)
Section 3.6 New issues with time

Chapter 4 (GA in APC)

Section 4.2 Definition 4.2.5
Sections 4.3 and 4.4 Analysis of EPT and EKE

Chapter 5 (Session-based WS)

Section 5.3 WS-Trust specification

Section 5.4 WS-SC specification

Section 5.4.2 Open-ended sessions Theorem 5.4.2
Section 5.5 Interop analysis

Chapter 6 (Relation)

Section 6.6 (Soundness) (n.a.) Theorem 6.6.1

Table 7.1: Practical and Theoretical contributions of this thesis (here, ‘TA’ stands
for ‘Timed Automata’, ‘GA in APC’ for ‘Guessing Attacks in the Applied Pi Calculus’,
‘WS’ stands for ‘Web Services’ and ‘SC’ stands for ‘SecureConversation’)

e Analysis and establishment of authentication properties of a web service protocol used
in the Interoperability (industrial) workshop to test web services implementations of
the WS-Trust and WS-SecureConversation specifications.

o Analysis of Abadi’s private authentication protocol, exposing a potential timing attack
if the protocol were to be implemented naively;

e Design of a novel authentication protocol that uses timed challenges as opposed to
nonces for efficiency, by exploiting timeliness of messages;

e Analysis of case studies: protocols for wireless sensor networks, content management
and the OSA/Parlay authentication protocol.

While developing the practical contributions, several theoretical results were also de-
veloped to analyse the correctness of the proposed practical approaches. The practical and
theoretical contributions for each chapter are shown in Table 7.1.

Future Work Just like security protocols use security constructions (e.g. cryptographic
primitives like message encryption) as building blocks, security languages are higher level
constructions that use security protocols as building blocks.  Table 7.2 shows example
constructions for security primitives, protocols (studied in this thesis) and languages. A
typical security primitive is message encryption; likewise, a typical security protocol is an
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Kind Example Construction | Example Property

Security Primitive | Message Encryption Attacker does not glean
information from ciphertext
Security Protocol Authentication protocol | Attacker does not impersonate
other participants

Security Language | Policy language Attacker does not perform
action disallowed by policy

Table 7.2: Security Primitives, Protocols and Languages

authentication protocol. An example of a higher level security language is a policy language.
In this case, the security language is designed to specify policies that regulate access to
particular data. There, logical languages can be designed to specify such access policies, and
proof systems can be developed to reason about whether certain actions are allowed to be
executed from particular policies [13, 14]. The secure transfer of these policies may be then
deployed using security protocols.

We conclude by suggesting that, as possible future work, it would certainly be interesting
to formally relate high level models for security languages to the (underlying) lower level
models for security protocols, in a similar way in which security protocols are related to their
underlying security primitives.
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APPENDIX A

Proofs

A.1 From Chapter 2

From Section 2.3

Definition A.1.1. Let r be a protocol role, and let s be a suffix of r. Then we let r — s denote
the prefix protocol role of r up to s, i.e. r — sis arolet s.t. v = (t s). Also, given two system
scenarios R = {ry,...,rptand S = {s1,...,8p} s.t. 8; is a suffix of r; fori € [1...n], we
let R — S denote the system scenario {r1 — s1,...,Tp — Sp -

Lemma A.1.2. Let Scy be a system scenario and let IK be an initial intruder knowledge.
In Procedure 2.3.4, let (Sc,IK,CS,tr) be a state in a run for Scy with initial intruder
knowledge IK. Then there exists o s.t. tr is an interleaving of Scoo — Sc.

Proof. We proceed by induction on the number of steps in the run for Scy. For the base
case, we have (Sc,IK,CS,tr) equal to the initial state (Sco, K, 0, ()), and thus tr = ().
Let o = ¢ (recall that € denotes the empty substitution). Then ¢r = () is an interleaving of
Scoo — Sc = Scg — Scg = 0.

Now consider a state (Sc,, IK, CSy,, try), with (S¢,_1,IK, CS,,_1,tr,_1) the previous
step in Procedure 2.3.4. We know that Sc¢,, = (Sc¢,—1 \ {r} U {r'})y for some r € Sc,_1
with r = (ev r’). We consider two cases depending on whether ev is a send or recieve event.

e When ev = {(a : m > b), Procedure 2.3.4 dictates that v = 0, CS,, = CS,,_; and
tr, = ( tr,—1 ev ). By the inductive hypothesis, there exists o s.t. tr,_1 is an
interleaving of Scoo — S¢,,—1. Hence, tr,, = ( tr,_; ev) is an interleaving of Scyo —
(Sen—1 \ {{ev Y} U{r'}) = Scpo — Sey,.

e When ev = (a : m <b), then Procedure 2.3.4 dictates that (C'Sy,,~y) is the output of
running P on CS,,_1 U{m : K(¢r) UIK}, and tr, = ( tr,_17 evy).

In this case, by the inductive hypothesis, there exist ¢’ s.t. ¢r,,_1 is an interleaving
of Scpo’ — Sep—1. Let 0 = o’v. Then, tr, = ( trp_17v evy) = (trn_1 ev)y is
an interleaving of (Scoo’ — (Scp—1 \ {{ev ')} U {r'}))y = (Scoo’y — (Sepn—1 \
{{ev ")} U{r'})vy) = Scpo’y — Se,, = Scpo — Sey,.

O

Remark A.1.3. [ftr is an interleaving of R — S, then tr is a prefix interleaving of R.



146 Appendix A. Proofs

Corollary A.1.4. Let Scy be a system scenario and let IK be an initial intruder knowledge.
In Procedure 2.3.4, let (Sc,IK,CS,tr) be a state in a run for Scy with initial intruder
knowledge IK. Then tr is derived from Scy.

Proof. Recall that tr is derived from Scy if ¢r is an instance of a prefix interleaving of Scg
(see Section 2.3).

By Lemma A.1.2, ¢r is an interleaving of Scoo — Sc for some o. By Remark A.1.3,
tr is a prefix interleaving of Scoo. Hence ¢r is an instance of a prefix interleaving of Scy,
obtaining the claim. O

Theorem 2.3.6. Let Scy be a system scenario and let IK be an initial intruder knowledge.
For Procedure 2.3.4, it holds:

1. Soundness: Let (Sc,IK,CS,tr) be a state in a run for Sco with initial intruder knowl-
edge IK. Then for every solution o of C'S, (i) tro is derived from Scy and (ii) tro is
valid wrt IK.

2. Completeness: Let tr be a valid trace wrt IK derived from Scy. Then there exists a
state (Sc,IK,CS,tr') in a run for Sco wrt IK and a substitution o s.t. o is a solution

of CS and tr = tr'o.

Proof. (1). (i) follows from Corollary A.1.4, since tro is an instance of ¢r. (ii) Recall that
tro is valid if for each i € [0...length(tr) — 1], last(tr;4+1) = (a : m<b) implies that m €
F(K(tr;) U IK) (see Definition 2.3.5).

Now, let o be a solution of C'S. We proceed by induction on the number of steps in the run
for Scy. For the base case, we have (Sc, IK, C'S, tr) equal to the initial state (Scg, IK,(, ()).
(ii) holds since trace tro = ()o = () is trivially valid.

Now consider a state (Sc,,,[K,CS,, tr,), with (S¢,,_1,IK,CS,,_1,tr,_1) being the
previous step in Procedure 2.3.4. We know that S¢,, = (Sc,—1 \ {r} U {r'})~ for some
r € Scp—1 with r = (ev 7’).  We have to consider two cases for ev, as dictated by
Procedure 2.3.4:

e Case ev = {a : m>b). Then CS,, = CS,_1,~v = 0 and tr,, = (tr,_1 ev). By the
inductive hypothesis, tr,_io is valid wrt IK.Then tr,,o is also valid wrt IK since ev
is a send communication event, and Definition 2.3.5 only regards receive event.

e Case ev = (a : m<b). Then (CS,,~) is the output of running P on C'S,,_1 U {m :
K(tr) UIK}, and tr, = (tr,—1y evy). Recall that o is a solution of C'S,,. Then by
soundness in Theorem 2.2.15, o is also a solution of (C'S,,_1 U{m : K(tr) UIK})~,
and so yo is a solution of C'S,,_1. By inductive hypothesis, tr,,_1yo is valid wrt K.
Since o is solution of m : K (¢tr) UIK, myo € F(K (tr)yo UIK), and then evyo is
valid. Thus, tr,o = (tr,_17y evy)o = (tr,_1y0 evyo) is valid.

(2). We proceed by induction on the length of ¢r. If ¢ = (), then the initial state (Scg, IK, 0, ())
is our desired state. Now let ¢r be a trace with n events recorded. Since ¢ is derived from
Sco, we know that there is p s.t. tr = ¢r'p, with tr’ prefix interleaving of Scy. Now let ¢r”
and ev be a trace and an event respectively s.t. ¢r' = (tr" ev). Since tr = tr'p is valid
wrt IK and derived from Scg, then also ¢r"/p is valid wrt /K and derived from Scq. More-
over, tr” p has n — 1 events recorded. Thus by inductive hypothesis there must exist a state



A.1. From Chapter 2 147

(Sc",IK,CS”,tr%) and a substitution o s.t. ¢ is a solution of C'S” and tr”p = tr°c. Since
tr¥ is derived from Scy by Corollary A.1.4, then tr° = tr"~ for some ~y and hence p = 0.
Consider cases for ev:

e Case ev = (a : m>b). From state (Sc¢”’,IK,CS”,tr'"v), Procedure 2.3.4 dictates
that there must exist a subsequent state (S¢’, IK, C'S”, (tr" ev)~), where S¢’ = S¢"\
{{evy r)} U {r} for some r € Sc¢’. Then tr = tr'p = (tr'" ev)p = (tr"p evp) =
(tr"'yo evyo) = (tr"~ evy)o, establishing the claim.

e Case ev = (a : m<b). Again, from state (Sc¢”,IK,CS” tr"v), there exists a
subsequent state (Sc'y', IK,CS’, (tr" ev)yy') with (CS’,~") output of P applied to
CS"U{my : K(tr")yUIK}, where S¢/ =S¢’ \ {{evy r)} U{r} for some r € Sc’.
Since o is a solution of C'S” and evp = evyo is valid by assumption, then ¢ is a
solution of C'S” U {m~ : K(tr"")y UIK}. By completeness in Theorem 2.2.15, then
for some o’ solution of C'S’, 0 = ~'¢’. Then tr = (tr"” ev)p = (tr'"yo evyo) =
(tr""y+" evyy')o’, obtaining the claim.

From Section 2.4

Notation and terminology Recall that Cy = {cx | X € V} is a set of fresh constants
generated by the intruder, and oy = {X — cx | X € V}. To establish Theorem 2.4.4, we
first clone C'y and define a set of fresh constants Dy = {dx | X € V}, and let py = {X —
dx | X e V}.

We say that t occurs in s, written ¢ < s, if ¢ is a subterm of s. We extend this to sets, and
write t < S'if t < s for some s € S. We also write S < t if for some s € S, s < t. We write
S X Tifforsomes € Sandt € T, s < t. We write t A s when ¢t < s does not hold (and
similarly fort £.5,5 Atand S A T).

Finally, we extend substitutions and use extended substitutions, i.e. mappings that replace
occurrences of constants by constants. We use, in particular, the extended substitution §, that
for each X € V maps constant dx into constant cx,i.e. § = {dx — c¢x | X € V}.

Lemma A.1.5. Lett be a term s.t. Dy A t. Then toy = tpyJd.

Proof. By (straightforward) structural induction on ¢. For the base case, ¢ = ¢ where ¢ #
dx. Then coy = ¢ = cpyd. For the inductive case, let t = (¢1,t2). Since dx does not
occur in t1 nor in ¢, then by inductive hypothesis, t1oy = t1py 6§ and teoy = tapyd, and
hence f,O'V = (tl,tQ)O'V = (tlUv,tQO'\/) = (tlpvd,tgpvé) = (tl,tg)pv(s = tpvé. The
remaining cases are similar. O

Corollary A.1.6. Let T be a set of terms s.t. Dy A T. Then F(Tpyd) = F(Tov).

The next step consists in extending the F(-) function with a new decryption rule cdec,
that allows symmetric decryption of {¢1 }+, using a key ¢}, whenever ¢ and t}, are equal up to
J,1i.e. tad = tho:

{{t1}4,:t5} —cdec t1 When t2d = 156
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Intuitively, for each variable X we use constants cx and dx, which represent the same
intruder generated constant; still, by technical reasons we want to distinguish the usage of
the constants coming from C'y, and the instantiations given to the variables.

We define F5(T) to be as F(T') plus the new rule cdec. More formally:

Definition A.1.7. Let T be a ground term set and § the extended substitution described
above. Then, Fs(T) is defined as U, >oF§ (T), where F§(T') is the set defined inductively
as follows:

F(T) = T
FMT) = FPHT)U{t|A—ytisaDY rule or cdecand A C F}~(T)}
Lemma A.1.8. F5(Tpy)é = F(Tpy9).

Proof. (C) By definition of F(-) and Fs(-), (Definition 2.2.1 and A.1.7), F5(Tpy)d =
Un>0F3 (Tpv)d and F(Tpyd) = Up>oF" (T pv6).

We show by induction on n that 3 (T'py)d C F"(T'pyd). For the base case, we have
that F2(Tpy)d = Tpyd = FO(Tpv ).

Now consider the inductive case, and let t € F2(T)py )0 = F§ H(Tpy)s U{r| A —,r
is a DY rule or cdec and A C Fy 1 (Tpy)}s. If t € Fi~'(Tpy)s, by inductive hypothesis
we are done, so consider the case in which t € {r | A —;, r is a DY rule or cdec and
A C FP YTpv)}d. So there is arule £ s.t. £is a DY rule or £ = cdec s.t. A —¢ r with
t=réand A C F}~'(Tpy). Consider cases for ¢:

e (= pair. Then r = (t1,t2), and {t1,ta} C FP '(Tpy), hence {t16,t20} C
F3~Y(Tpy)s. By inductive hypothesis {t10,t26} C F"~1(TpyJ) and hence t =
r6 = (t1,t2)0 = (t10,t20) € F™(Tpyd) by applying rule pair in F*~1(Tpy6).
(The remaining cases (except £ = cdec, done below) are similar.)

e (= cdec. Then A = {{r},,t|} for some r s.t. t = r§ and some ¢; and ¢} s.t. t, =
t16. By inductive hypothesis {{rd}:,s,t16} C F*1(Tpyd), and since t16 = #/6
thent = rd € F"(Tpyd) applying rule sdec.

Case (D). We show by induction on n that F#(Tpy)d O F™(Tpyd). The base case is
similar to the previous case (C).

Now consider the inductive case, and let t € F*(Tpyd) = F* L (Tpyd) U{r| A —,r
isaDY rule and A C F" " 1(Tpyd)}. If t € F*~1(Tpy ), by inductive hypothesis we are
done, so consider the case in which t € {r | A —, risaDY ruleand A C F"~}(Tpyd)}.
So thereis arule £s.t. fisaDY rules.t. A —, rand A C F*~1 (T'pv6). Consider cases for
L:

e ( = pair. Thent = (t1,t), with A = {t1,t2} C F"~Y(Tpyd), so by inductive
hypothesis {t1,t2} € F2~ ' (Tpy)d. So there is {r1,72} € Ff " (Tpy) s.t. t; =116
and ty = rqd. Hence, (r1,72) € F§(Tpv) applying rule pair, which means that
t = (t1,t2) = (r1d,r20) = (r1,72)0 € F3(Tpy)o. (The remaining cases (except
{ = sdec, done below) are similar.)

o ( = sdec. Then A = {{t},,t1} C F"YTpyd), so by inductive hypothesis
{th,,t1} € FP~Y(Tpv)s. So there is {{r}.,, 71} C Ff ' (Tpy) st. {th, =
{r}r, 6 and t; = rid. Now, since r16 = t; = r{d, we can apply rule cdec in
{r}, i} C FPH(Tpy) to obtain r € F2(Tpy ), hence t = 1§ € F(Tpy)d.
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O

Lemma A.1.9. Let T’ be a term set in which (Dy U Cy) 2 T, and let T = T' U Cy. If
{t}, € F(T) and for some Xog € V, cx, 3 torcx, X, then {t,7} C F(T). The same
holds for the terms (t,r),h(t), pk(t), {t},” and sig(r).

Proof. We show by induction on n that if {¢},, € F"(T') and cx, occurs in either ¢ or r for
some X € V, then {t,r} C F™(T'). The base case holds trivially, since by assumption there
isnoterm {t}, € T = T' UCy s.t. cx, occurs in t or r for some X € V. For the inductive
step, let {t}, € F(T) = F* Y (T)U{s| A —¢ sisaDYruleand A C F*~Y(T)}. If
{t}, € F»~1(T) we apply the inductive hypothesis and we are done, so consider the case in
which there is some DY rule £ s.t. A —; {t}, with A C F"~1(T). Take cases for :

e (= senc: Then A = {t,r} C F*~Y(T) C F*(T).

o (= sdec: A = {{{t}+}u,u}. Since cx, occurs in either ¢ or r, then cx, occurs in
{{t}+ }u, and hence by inductive hypothesis {t},, € F"~(T'). Applying the inductive
hypothesis again gives us the claim. (The cases of / = first and ¢ = second are
similar to this case).

O

Lemma A.1.10. Let T’ be a term set in which (Dy UCy) 2 T, and let T = T' U Cy.
Let o be a ground substitution s.t. for each X € V st. X <X T, Xo € F(To) and
(Cy UDy) £ Xo. Let o’ be the extended substitution {dx — Xo | X € V} and § =
{dx = ex | X € V}. Lett be a term s.t. to' € F(To), and let r be a ground term for
which:

1. Cy A&,
2. foreverydy withY € Vs.t. dy <r, Y T, and
3. td=rd.
Thenro’ € F(To).
Proof. We proceed by structural induction on 7. The base case is when r is a constant:

e r = dx, for some Xy € V. By (2), X, occurs in 77, and hence ro’ = Xgo € F(To)
by hypothesis.

e Otherwise, 7 = ¢ # dx (and also ¢ # cx by assumption (1)) for each X € V. Here,
rd = ¢d = ¢ = td (by assumption (3)) and hence to’ = co’ = ¢, thus ro’ = co’ =
c=to' € F(To).

For the inductive case, we take cases on the structure of r (we show here only the case for
pair, but the remaining cases are similar):

e r = (u,v). We know that ¢t = (w,x) for some w and x. Thus, r6 = (u,v)d =
(ud,vd) = (wd,zd) = (w,z)d = t6. So ué = wo and vé = xd. Take cases on
whether cx, for some X € V occurs in w or x:
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— Suppose that cx, does not occur in w nor z for all Xy € V. Then since rd = t§
and no cx occurs in r for any X € V by assumption (1), then = ¢ and we are
done.

— Now assume that cx, occurs in either w or z, for some Xy € V. Then cx, occurs
inwo’ orin 2o, since o’ only replaces occurrences of dy forevery Y € V. Since
(w,z)o’ € F(To), then by Lemma A.1.9 {wo’, z0'} C F(To). By inductive
hypothesis, then {uc’,vo’} C F(To), and so ro’ € F(To).

O

Lemma A.1.11. Let T" be a term set in which (Dy UCy) AT, andlet T = T'UCy. Let o
be a substitution s.t. for each variable X € V s.t. X <X T, Xo € F(To) and(Cy U Dy) A
Xo. Also let o' be the extended substitution {dx — Xo | X € V}. Then Fs(Tpy)o’ C
F(To).

Proof. We show by induction on n that F2/(Tpy )o’ C F(To). The base case: F2 (Tpy)o’ =
Tpyo' = To C F(To), the last equality following from the fact that there are no occur-
rences of dx in T for any X € V.

For the inductive case, let t € F2(Tpy)o’ = Fy Y(Tpyv)o' U{r | A —; risaDY
rule or cdec and A C FP~H(Tpy)}o'. If t € Fy~*(Tpy)o’, by inductive hypothesis we
are done, so consider the case in which ¢t € {r | A —, risaDY ruleor cdecand A C
Fy~YTpy)}o'. So there is arule £ s.t. £ is a DY rule or £ = cdec s.t. A — r with t = o’
and A C F~'(Tpy). Consider cases for /:

e ( = pair. Then r = (t1,t2), and {t1,t2} C F§ (Tpy), hence {t10’,t30'} C
Fy~Y(Tpy)o’. By inductive hypothesis {t10”, 20’} C F(To) and hence t = ro’ =
(t1,t2)0’ = (t10',t30") € F(To) by applying rule pair in F(To). (The remaining
cases (except £ = cdec, done below) are similar.)

o ( = cdec. Then A = {{r};,,t,} C F} ' (Tpy), with t;6 = #|5. Hence, it holds
that {{r};,0’,ti0’} € F2 *(Tpy)o’. By inductive hypothesis, {{r}s o', tj0’'} C
F(To).

Take cases in which cx, for some Xy € V occurs in either ro”’ or t10”:

— Consider the case in which cx, for some X € V occurs in either 7o’ or t10”.

We can apply Lemma A.1.9, since To = T"cUCYy, where no ¢y nor dz occurring
inT'o forany Y, Z € V, since by assumption no cy and dz occur in X o for all
X,Y,Z € Vs.t. X occurs in T").

Thus since {r}:, 0’ € F(To), by Lemma A.1.9, {t10',r0'} C F(To), and
since t = ro’ we are done.

— If no e¢x occurs in ro’ nor in t1o’ for all X € V. Then no cx occurs in ¢; either,
for all X € V. Then we can apply Lemma A.1.10 and obtain that t10’ € F(To),
and hence t = ro’ € F(To).
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Lemma A.1.12. Let m be a ground term s.t. (Cy U Dy) £ m. Let o’ be the extended
substitution {dx — Xo | X € dom(o)}, given a substitution o, and let 0 be the extended
substitution {dx — cx | X € V}. Let T be a ground term set. Then m ¢ F(T)o’ implies
that m & F(T)0.

Proof. We proceed by structural induction on m. For m = ¢ for some constant ¢ s.t. Cy U
Dy £ ¢, c & F(T)o' implies that ¢ ¢ F(T') since Dy A c¢. Hence ¢ ¢ F(T)d since
Cy 2 c. Now consider cases for m ((We show here only the case for pair, the other cases
are similar):

e m = (t1,t2). Hence t1 € F(T)o' and to & F(T)o’, so by inductive hypothesis
{t1, tg} ¢ f(T)(S Hence m = (t1, tg) € f(T)5

O
We now quote two needed results from Millen and Shmatikov’s paper [149]:

Theorem A.1.13. Let (Sc,IK,CS,tr) be a state of Procedure 2.3.4, for initial scenario
Sco, and let —=(m : K(tr') UIK) be a negated constraint where tr' is a prefix trace of tr.
Recall also that S satisfies the origination assumption (see Section 2.2.2). Then:

1. Theorem (Invariance of origination) in [149]: For each variable X < K (tr') UIK,
there is (X : K(tr")UIK) € CS with tr" prefix trace of tr’, and X A K (tr").

2. Theorem (Invariance of monotonicity) in [149]: Let tr' and tr" be the two traces
mentioned above, satisfying that tr'" is a prefix trace of tr'. Let o be a substitution s.t.
Xo € F(K(tr")UIK)o) foreach X € V s.t. X : Tx € CS for some Tx. Then
Xo € F((K(tr') UIK)o).

Theorem A.1.13(1) says that whenever we have a constraint mentioning a variable X,
we can find another constraint in C'S of the form X : T, where X does not occur in 7". So,
variable X always originates in a receive action. Theorem A.1.13(2) says that the intruder
never forgets information: If one solution is possible in an early step of the run, then that
solution is still possible afterwards (this is evidenced by the fact that since ¢’ is a prefix
trace of tr/, then K (tr") C K(tr')).

We are ready now to prove the main result, Theorem 2.4.4.

Theorem 2.4.4. Let (Sc,IK,CS,tr) be a state from Procedure 2.3.4 where for each X :
Tx € CSfor X € V, Tx = T% UCy where Cy A T%. Let =(m : K(tr') UIK) be a
negated constraint for tr' prefix trace of tr, where m is ground and Cy, A m. Let o be a
substitution s.t. forall X € Vwith X : Tx € CS, Cy A Xo. Then o is a solution of both
CS and —=(m : K(tr") UIK) iff ov is a solution of both C'S and —~(m : K (tr") U IK).

Proof. Recall the set Dy = {dx | X € V} is chosen fresh, i.e. Dy A Tx foreach X € V
with X : Tx € CS for some T'x, and also Dy A IK U K (tr') U {m}.

The non trivial case is (=), that is, when we know that ¢ is a solution of C'S and —~(m :
K(tr') UIK) then oy = {X — cx | X € V} (ie. the substitution assigning a fresh
constant cx to each variable X € V) is also a solution of C'S and —(m : K(tr') U IK).
We first note that since Cyy C IK, then Cyy C Tx for every X : Tx € CS, and hence
Xoy = cx € Cy by definition, so the positive part C'S is always solvable by oy,. To show
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that —=(m : K (tr') UIK) is solvable by oy, we need to show that m ¢ F((K (tr')UIK )oy )
assuming m ¢ F((K(tr') UIK)o) (since m is ground, mo = oy = m).

We first check that it is possible to apply Lemma A.1.11 to F((K (tr') UIK)o). Let X
be a variable occurring in K (¢tr') U IK. We need to see that Xo € F((K (tr') UIK)o).

By Theorem A.1.13(1), there is a constraint (X : K(¢tr"”) UIK) € CS s.t. tr” is a
prefix trace of ¢r’. Since o is a solution of C'S, Xo € F((K(tr") UIK)o). By Theo-
rem A.1.13(2), Xo € F((K(tr') UIK)o). Hence we apply Lemma A.1.11, and obtain that
m & F((K(tr') UIK)o) implies m ¢ Fs((K(tr') UIK)py)o’. Then by Lemma A.1.12,
m & Fs((K(tr") UIK)py)o. By Lemma A.1.8, m ¢ F((K (tr") UIK)py ), and finally by
Corollary A.1.6 m ¢ F((K(tr') UIK)oy ). O

From Section 2.5

Lemma 2.5.12. Let ¢ be a closed PS-LTL formula, tr be a trace and IK be an initial
intruder knowledge, and let o be a ground substitution such that var(tr) C dom(c). Then

(tro, IK) = ¢ iff o = T(, tr, IK).

Proof. Correcmess of Step 1. We first show that Step 1 is correct: (tro,IK) | ¢ iff o
| ¢ |tr. We proceed by induction on the number of rewriting steps of |-]|-. Base cases:

e ¢ = Yoy and tr = (). By definition of =/, o &' | Y9 |(), since |Y¢|() = false. Also
by definition of |=, ((),IK) - Y.

e Cases ¢ = true and ¢ = false are immediate.

e ¢ = learn(m). Since ¢ is closed, then m is ground. Now, o =’ [learn(m)]tr iff
m € F((K(tr) UIK)o) , since by definition |learn(m) [tr = m : K (tr) UIK. Also
by definition of |, (tro,IK) |= learn(m) iff m € F(K(tro) UIK).

o ¢=p(dy,...,d,), tr = () immediate.

o ¢ = pdy,...,dy), tr = ({tr' qle1,...,em)), withp # q orn # m. Here, o £
|p(dy,...,d,)]tr, since by definition |p(dy, ..., d,)|tr = false. Also (tro,IK) £~

@, since p(dy,...,d,) # qle, ..., en)o.

o & =p(dy,...,dy), tr = ({tr' p(ey,...,e,)). Here, o E' |p(dy,...,dn)]|triff o =
dy = ey N+ Ndy, = e, iff by definition of ', 0 ' d; = e; foralli € [1...n],
iff again by definition of =/, d; = e;o, forall i € [1...n], iff p(dy,...,d,) =
ple1, ..., ey)o, iff by definition of |=, (tro, IK) = ¢.

Inductive cases:

o ¢ = . o ' |p|triff o E' —|¢]triff o £ [¢]tr iff by inductive hypothesis
(since ¢ is closed, 9 is closed as well) (tro, IK) = ¢ iff (tro,IK) = ¢. (Similarly
for cases A and V.)

e ¢ = Yt and tr = (tr’ e). Notice that ¢ is closed. o ' |p|tr iff o E' [¢|¢r' iff by
inductive hypothesis (tr'o, IK) = ¢ iff by definition, (tro, IK) | ¢.
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¢
(L IK) |= ¢2iff ((), 1K) |= ¢.

e ¢ = $1S¢y and tr = (). o ' |¢]() iff 0 E' |¢2]() iff by inductive hypothesis
(
e ¢ = $1S¢y and tr = (tr' e).

E' |#18¢2]tr iff by definition of |-|, o E' [#18¢2]tr’ and o ' |¢;]tr, or
E’ | ¢2]tr. Iff, by inductive hypothesis:

(tr'o, IK) = ($18¢2) and (tro, IK) |= ¢1, or (tro,IK) = ¢o Iff

Ji € [0, length(tr'o)] : ({trio, IK) = ¢2AVj € [i+1,length(tr'o)] : (trio, IK) =
¢1) and (tro,IK) |= ¢1, or (tro,IK) | ¢o Iff

3i € [0,length(tro) —1] : (trio = pa AV) € [i+1,length(tro) —1] : (trjo, 1K) =
¢1) and (tro,IK) = ¢1, or (tro,IK) |= ¢o. iff

Ji € [0,length(tro)] : ((trio, IK) = ¢2 AVj € [i + 1,length(tro)] : (trjo, 1K) =
o) iff

(tro,IK) = (¢18¢2) = ¢.

e Cases ¢ = Jy and ¢ = V) are immediate.

¢
g
g

The correctness of Step 2 follows from the correctness of standard formula manipula-
tions.

Correctness of Step 3.
Let 7 be the result of one rewrite of Step 3 for a formula ¢. Then o =’ ¢ iff o =’ 7.
Cases:

o ¢ =Vvpandm = 9, forvnotfreein). Theno ' giffforallt € 7T : o ' ¥t /v]
iff o =’ 4, since v is not free in ¢, and then o =’ 7.

e ¢ =Vu.~(v=t)and m = false. Theno ' ¢iffforallt’ € T+ :0 ' (' =1)
iff forallt’ € T+ :0 P (t' =t)iffforallt’ € T+ : ' # to, which is false (take
t' = to); likewise, o £’ false, whichis o £ .

e » =Vu.(v=1t)and 7 = false. Theno ' ¢iffforallt’ € T+ : 0 E (t' =1t)
(since v does not occur in ¢ by assumption, see last paragraph of Section 2.5.1) iff for
allt! e Tt :o ' (¢ =t)iffforallt’ € T+ :t' = to, which is false (take t’ # to,
for example letting ¢’ = h(to)). Likewise, o =’ false, whichis o &' 7.

e ¢ =Vu.(v: K)and m = false. Theno ' ¢iffforallt’ € T+ : 0 ' (' : K)
iff forallt/ € 7T : ¢’ € F(Ko), which is false by letting ¢’ be any constant (e.g., an
agent identity) not occurring in Ko, since the universe of constants is enumerable and
Ko finite. Likewise, o j£’ false, which is o £ 7.

e ¢ =Vu.~(v:K)andw = false. Theno =’ ¢iffforallt’ € T+ : 0 £ (¢ : K)
iff forallt € TT : ¢ ¢ F(Ko), which is false by letting ¢’ be ¢ € IK C K (see
Section 2.2.4). Likewise, o £’ false, whichis o £ 7.

o ¢ =VYvu.(P1 Aha), T = Vv.ahy AVu.apy. Theno = ¢iffforallt € 71 : 0 E (¢ A
o)[t/v]iffforallt € TF : o ' (1]t /v] Abe[t/v]) iffforallt € T+ : o = 11 [t/v]
and forallt € T+ : o = o[t /v]iff o ' Vv and o ' Vv.4hg, whichis o ' 7.



154 Appendix A. Proofs

o ¢ =VYu.(1h1 Vb)), ™ = Vv.ihy V Vo.1hy for v not free in ¢ or v not free in ¢o.
We see the case in which v not free in ¢ (the other two cases are analogous): o =’ ¢
iff forallt € 71 : o E' (1 Vbo)[t/v]iff forallt € TT : o E' [ /v]oro
o[t /v]iffforallt € TT : o E ¢ oro E ol /v]iff o E' ¢y orforallt € T :
o E o[t /v]iff o E Yu.aby V Vv,

O

Lemma 2.5.14. Let ¢ be a closed PS-LTL formula, and (Sc,IK, C'S,tr) a state from Proce-
dure 2.3.4. Assume that T = T (¢, tr, IK) is a well-behaving EF formula, 7 = vy ... v,

with 1 = \/j W and pj = N\, 7. Then:

1. D(w,CS) succeeds and returns a substitution o implies that o =" , with tro valid
w.rt. IK; and

2. o = 7, withtro valid w.rt. IK implies that there exists a substitution vy s.t. D(m, C'S)
succeeds and returns .

Proof. (1): We know that there exists some disjunct ; s.t. D(m, C'S) succeeds and returns
0 = PPrOV.

As in the definition of Procedure 2.5.13, we assume that ¢; = A; A B; A C; A Dy, as
follows (recall that = denotes syntactic equality):

4; = (L =Ry) (1)
B, = ~(L7 =R;) @)
C; = (m;:Kj) 3)
D; = —\(m; : KJ_‘) 4)

This simplifies notation and can be generalized in a straightforward way. We now show
that o =’ 7. By definition, 0 =’ 7 holds iff there exists t; € 7+...t, € Tt st. 0 '
Y[t fug, .. vy,). Let t; = vo fori € [1...n]. Then by (1)-(4) we have to show that:

1. o = Aj[" 7 "7 Juy, ..., v,] and
2. o ' Bj["17 Y Jug, ..., vp] and
3. o = C;[" 7" Jug,. .., v,] and
4. o = D[ 7" Jug, ..., U]

This will imply the thesis.

e We first show that o =" A;["1%"n7 /yy, ..., v,]. Since Step 2 of the procedure
succeeded with unifier p, we have that L;p = R;p. Thus L;(pprov) = R;(pprov),
and since 0 = ppyoy, o =’ (Ljo = R;) by the definition of =’. We know that
var(Lj) C {v1,...,v,}. Recall that we assume that variables v;, i € [1...n| are
disjoint from the variables in var(¢r), which implies that {vy, . .., v, } Nvar(R;) = 0.
Then o =’ (Ljo = R;) is equivalent to o =" (L; = R;)["7 "7 Juy, ..., v,
establishing the claim.
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e Now we show that o =" C;["*7 "7 Juy,...,v,]. Since Step 3 of the procedure
succeeded, we know that C'Sp U {m;p : K;p} is solvable with partial solution py.
By Soundness in Theorem 2.2.15, m;pproy € F(K;pprov), since oy is always
a solution of any simple constraint set {X : Tx | X € V} with Cy C Tx (see
Section 2.4). Hence by the definition of ', ¢ = (mj o : Kj), since no v; oc-
curs in K, ¢ € [1...n], and var(m;) C {v1,...,v,} we obtain again that o =’
Cy[17 Jur .. va]

e We now show that o =" D;["1% "7 /vy, ..., v,] holds. Since Step 5 of the pro-
cedure holds, we know by Corollary 2.4.2 that m;'o ¢ F (K ;0‘), which by defini-
tion of |=" implies that ¢ =’ —(mjo : K;'). Since no variable v; occurs in K,
i € [L...n], and var(m;) C {vi,...,v,}, we finally obtain that o =" —(m; :
K[ fog, . vp].

e We finally establish ¢ =" B;["*7 "7 /uy,...,v,]. Since Step 6 succeeded, we
know that L (pprov) # Rj(pprov ). By the definition of =, this implies that o =’
—(L7o = R}). We finally obtain that o |= =(L; = R})["*7""7 vy, ..., v,] since
no v; occurs in R}, i € [1...n] and var(L;) C {v1,...,vp}.

Finally, to see that ¢ro is valid, it is sufficient to observe that ppy, is a partial solution of
CS and oy is a solution of C'Sppy,.

(2) We know that ¢ =" 7. By the definition of =/, this holds iff there exist an index j
andt; € 77 ...t, € Tt st. o ' [ttt Juy,...,v,]. Here we can assume (by alpha
conversion) that dom(c) N {vy,...,v,} = 0.

As done in the previous case and in the definition of Procedure 2.5.13, we assume that
v; = Aj AN Bj ANCj A Dj, as follows (recall that = denotes syntactic equality):

4; = (Lj=Ry) (1)
B; = ~(Lj =Rj) 2)
C; = (my:Kj) 3)
D; = —(mj:K;) )

This simplifies notation and does not result in a loss of generality. By assumption, we
know that ¢ =’ 7, hence by the definition of =’ we know that there exists 1 € 7+ ...¢, €
THst o [ttt fug, ... v, Leto! = [0t uy, ... v,]. This implies, by (1)-(4),
that the following items hold:

1. 0 =" Ajo’ and
2. 0 ' Bjo’ and
3. 0 =’ Cjo’ and
4. 0 = Djo’

We need to show that there exist appropriate p and p; s.t. Steps 2,3,5 and 6 of the
procedure succeed. We thus let v be pproy .
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o We first see that there exists p s.t. Step 2 succeeds. Recall we assume that variables
from v;, ¢ € [1...n] are disjoint from the variables in var(tr) (see last paragraph of
Section 2.5.1), which implies that {v1,...,v,} Nvar(R;) = 0. Thus 0 =" Ajo’ is
equivalent to o =" (Lo’ = R;), which then by definition of =" implies that

LjO'/ = R]'O' (5)

Hence oo’ is a unifier. Now, recall that Step 2 succeeds iff L; and R; unify. Therefore
by (5) Step 2 succeeds. In addition, Step 2 returns a m.g.u. p of L; and R;. By
well-known results on unification (e.g. [34]) we have that for some ps, oo’ = pps.

e We now show that there exists py s.t. Step 3 succeeds. We know that o =" C,o’,
that is, 0 =" (mjo’ : Kj;) which implies that m;o’ € F(K,o), and hence that
mjpp2 € F(K;pp2). By Completeness in Theorem 2.2.15, m;p : Kjp is solvable
with a partial solution p; and there exists a substitution £ s.t. oo’ = ppr€. Hence,
Step 3 succeeds returning partial solution py.

e We now see that Step 5 succeeds. We know that ¢ =’ Dj;o’, hence that o =’
—(mjo’ : K;), which by the definition of =" implies that m;'o’ ¢ F (K o), which
is m; ppr§ & F(K; ppx€). Hence § is a solution of —(m; ppx, : K ppx). By The-
orem 2.4.4, oy is also a solution of =(m; ppr : K; ppy), and thus =(m; pproy :
K pproy) is solvable. Thus by Corollary 2.4.2 we conclude that applying P to
m; pprov = K pproy must fail, and hence Step 5 must succeed.

e We finally see that Step 6 succeeds. We know that o =" B, o, ie. that o '
—(L;;0" = R};). By the definition of |=’, the latter implies that L7 ,0” # R}";c. Thus
L7 ppi€ # R} ppk€. Hence L)' ppy # R ppk, and so L}, pprov # R pprov,
ensuring that Step 6 succeeds.

O

A.2 From Chapter 5

This appendix provides a proof of Theorem 5.4.2. The target properties involve events that
record the whole session history, hence they cannot be automatically handled via TulaFale
and ProVerif. Instead, we automatically establish a series of intermediate properties, and we
compose these properties using standard (manual) proof techniques for the pi calculus.

Before detailing the proof, we set up auxiliary notations for processes and present an
intermediate script that models our protocol more abstractly.

Additional definitions for processes We reason about TulaFale scripts as processes in
the applied pi calculus [23, 50]. We use the concrete syntax of TulaFale for all processes. We
let P, Q, T, C, S, S range over processes. We write P = @ when P and () are structurally
equivalent, P — @ when P reduces to () in a single reduction step (that is, a communication
on a channel, a predicate evaluation, or a test), and P —* @ when P reduces to Q) inn > 0
steps.
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A context is a process with holes ([-]) instead of some of its subprocesses. We consider
several kinds of contexts: an evaluation context is a context with a single hole occurring
at top level (that is, under restrictions and parallel compositions, but not under guards); for
instance, an arbitrary active attacker is modeled as an evaluation context with no events. A
guarded context is a context where all occurrences of the holes are guarded. A linear context
is either the hole, or an evaluation context applied to a (simpler) linear context under a linear
guard: an input, an output, a filter, or an event. We always assume that restricted names
are distinct from free names in their enclosing contexts—this can be systematically enforced
using local renaming. A process P records the events begin C, ..., end C’, ... when these
events occur in evaluation contexts in P, that is, P = E[ beginC| ... |[endC’ | ...] for
some evaluation context E.

We let SV be the script presented in Section 5.4.2 and defined in ssws—secrm.tf.
With these definitions, we arrive at the following restatement of the theorem:

RESTATEMENT OF THEOREM 5.4.2.
Let E be an evaluation context with no events and where the name secret does not occur.

If E[SV] —* P, then

1. If P records end C3n(sc,sessionld,H,n), then P records either begin C3n(sc,sessionld,
H,n) or begin Leak(sc).

2. If P records end C4n(sc,sessionld,H,n), then P records either beginC4n(sc,sessionld,
H,n) or begin Leak(sc).

3. If P outputs secret on a free channel, then P records begin Leak(sc) and either event
begin C3n(sc,sessionld,H,n) or event begin C4n(sc,sessionld,H,n) where secret is the
body of the last envelope of H.

In addition to SV , used in the statement of Theorem 5.4.2, our proof relies on SA, asim-
ilar but more abstract script defined in ssws—-secrm-a.tf. TulaFale terminates rapidly
on S (within about twenty minutes) but apparently diverges on S. To complete the proof
of Theorem 5.4.2, we manually relate the behaviors of SV and SA. Next, we outline the
differences between SV (on the left) and S (on the right). The client processes have the
following structures:

private channel dc(item,item,item,item). private channel dc(item,item).
C[ C|
new sessionld:string; new sessionld:string;
out dc(sc,sessionld,[],zero)) out dc(sc,sessionld)
Il Il
tin dc(sc,sessionld,H,n); lin dc(sc,sessionld); in env(n);
Lsc] Lic]|
begin C3n (sc,sessionld,[Req @ H],n); begin C3a (sc,sessionld,[Req],n);
Lac| Lac|
end C4n (sc,sessionld,[Resp Req @ H],n); end C4a (sc,sessionld,[Resp Req],n);
out dc(sc,sessionld, out dc(sc,sessionld).
[Resp Req @ H],succ(n)). ]]] M

Channel dc—named sessionDbC in the scripts—appears in S and S only as explicited
above. The rest of the scripts is abstracted as a binary context C[-][-] and two linear contexts,
Lgc[-] and L4c[-].
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The client uses a message on private channel dc to record the state for every running ses-
sion. To initiate a session, the client creates a fresh identifier sessionld and sends a message
on dc representing the session state: its identifier and its security context sc (bound by the
context C[-][-]). To extend an existing session, the client reads the session state on dc, per-
forms the exchange, then puts back an updated state on dc. In SN, the message also records
the session history and the number for the next SOAP message, starting with an empty his-
tory and zero; the history is included in all events. In S, only sc and sessionId are recorded,
the history is not used, and the next-message number is an arbitrary value provided by the
environment on channel env; the simplified events are called C3a and C4a. (In the scripts,
the message number n is named msgNumber.)

Similarly, the server processes in S and S+ have the following structures:

private channel ds(item,item,item,item). private channel ds(item,item).
S| S|
in public(sessionld); in public(sessionld);
L 4 rc[out ds(sc,sessionld,[],zero)] L 4 rc[out ds(sc,sessionld)]
Il Il
tin ds(sc,sessionld,H,n); tin ds(sc,sessionld); in env(n);
Lss| Lss]
end C3n (sc,sessionld,[Req @ H],n); end C3a (sc,sessionld,[Req],n);
Lys| Lys|
begin C4n (sc,sessionld,[Resp Req @ H],n); begin C4a (sc,sessionld,[Resp Req],n);
out ds(sc,sessionld, out ds(sc,sessionld).
[Resp Req @ H],succ(n)). ]]] i

Channel ds—named sessionDbS in the scripts—appears in SN and SA only as explicited
above, and the rest of the scripts is abstracted using a binary context S[-][-] and three linear
contexts, Larc, L3s[], and Lyg[-]. The context L src is part of the implementation of
an anti-replay cache; before sending a message a message on ds, it checks that this is the
first session with this identifier, and otherwise does nothing. (See Lemma A.2.1 for our pi
calculus implementation of the anti-replay cache.)

As a simplification, our server processes input new session identifiers sessionld directly
from the environment, on channel public—named ContextProvideSessionld in the scripts—
instead of reading them from received first messages.

Reachable states of SV The following lemma gives an explicit representation for the
reachable states of the protocol SN, This representation is used later to relate the recorded
events of SV to those of SA. Crucially, the lemma concerns only the management of state
on three channels; its correctness does not depend on the rest of the protocol.
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Lemma A.2.1 (Reachable States for SV). We let

C'C = new x:string; out dc(sc,x,[],zero)
Sgl/,sc = in cache(y°);(out cache([y@y°]) |if not (yin y°) then out ds(sc,y,[],zero))
Csuce = lindc(sc,x,Hn); LClout dc(sc,x,H’,succ(n))|
Ssuce = linds(sc,y,H,n); LS[out ds(sc,y,H’,succ(n))|

™ = private channel dc(item,item,item,item).

private channel ds(item,item,item,item).

private channel cache(items).

E[Csucc |Ssucc |
Cx/[Ciclscex |Sy[Sy sl (y,seyey |out cache(Y°) |
I nex Copl out de(se,z, Hy nm) | |

Ly nyey Sy.nlout ds(scy, Hy )]

where X' range over finite multisets of terms; X, Y, andY' range over finite sets of pairs of
terms and (term-coded) integers; Y ° is a list collecting all first terms of pairs in Y ; E ranges
over evaluation contexts;, Cx range over contexts with a hole for each element of X'; Sy
range over contexts with a hole for each element of Y'; C, ,, and S, ., range over linear
contexts indexed by X and Y; LC and LS are linear contexts appearing in SN such that
SN = Tﬂ%‘ Let E' be an evaluation context, and assume that dc, ds, and cache do not occur
in any of those contexts.
If E'[SN] —* P, then

1. there exists TV such that P = TN N

2. reduction steps on dc communicate messages (sc, x, H, ;, i) for pairwise-distinct (x,)s
such that (x,n) € X and i < n.

3. reduction steps on ds communicate messages (sc, y, Hy ;, 1) for pairwise-distinct (y,1)s
such that (y,n) € Y and i < n.

In the lemma, the process T N represents a reachable state of SV, parameterized by four
index sets: the sets X and Y keep track of ongoing sessions for the client and the server,
respectively, with initially X = Y = {J; the sets X’ and Y keep track of sessions that have
not started yet.

Proof. The proof is by induction on the number of steps in E'[SY] —* P. The base case
holds by construction for TV) g- For the inductive case, the inductive hypothesis yields ™
such that F'[SV] —k= TN . P. We perform a case analysis on the final reduction step
using the structure of ™ , with the following cases:

e The step is a communication on private channel dc. By construction, the input is the
replicated input Cl,,.., and there are two subcases for the output:

— The output is in C’, for some sc € X’. Using structural equivalence, we rename
the restricted name sessionld to some globally-fresh name x and lift the restric-
tion on x to E. We remove sc from X', add (z, zero) to X, and define H, ¢ and
C..0[-] to match the triggered process LCY.. . ].
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— The output is in C,, for some (z,n) € X. Thus, Cy,n is an evaluation con-
text. Using structural equivalence, we merge this context with F, we replace
(z,n) by (xr,n+ 1) in X, and define H, 1 and C; 41 to match the triggered
process LC|...].

e The step is a communication on private channel ds. By construction, the input is the
replicated input Sg,.. and the output is in Sy ,, for some (y,n) € Y. Thus, S, is
an evaluation context. As in the case above, we merge S, ,, with E, replace (y,n) by
(y,n+1)inY, and define H, ,, 41 and S, ,,+1 to match the triggered process LS|. .. ].

e The step is a communication on private channel cache. By construction, the only
output on this channel is out cache(Y°); the input is .S}, ;. for some (y, sc) € Y'. We
distinguish two subcases:

— If y € Y°, then the triggered process is an output on cache of a list with the
same elements as Y° in parallel with an inert process (since the inclusion test
succeeds). To conclude, we let Y’ become Y’ minus (y, sc).

- Otherwise, we let Y’ become Y’ minus (y, sc), let Y become Y plus (y, zero), let
H, o be [], and let S, ¢ be [-], so that the triggered process is an updated message
on cache in parallel with the new element in the product on Y.

e All other communication steps preserve the structure of 7%V, for some updated sets
X', Y and contexts E, Cx, Cy ., Syr, Sy n-

O

Relating events of S and S* In S, the correspondences C3n and C4n record similar
session information, namely a tuple of the form (sc,sessionld, [M @ H],n). We define their
projection to events that may occur in S* as follows:

event C3n (sc,sessionld, [Req @ H],n)# = event C3a (sc,sessionld,[Req],n)
event C4n (sc,sessionld, [Resp Req @ H],n)# = event C4a (sc,sessionld,[Resp Req],n)

Other events are left unchanged: Leak(sc)” = Leak(sc). We lift this projection to processes:
P# is obtained from P by projecting any event occurring in P. Our next lemma shows that,
for any run of SN, there is a corresponding run of S+ that records the same Leak events, and
an event event C# for each event event C. (On the other hand, S has runs that cannot be
simulated by SV.)

Lemma A.2.2 (S simulates SV). For any evaluation context EN with no events and where
the name secret does not occur, for any reductions EN [SN | —=* P, there exist an evaluation
context E* and reductions EA[SA] —* T such that

1. if P records e, then TA records e¥;
2. if TA records f, then P records some e such that f = e¥#;

3. If P outputs secret on a free channel, then T also outputs secret on a free channel.
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Proof. By Lemma A.2.1(1), we have a process of the form TN with P = TV (and in
particular with the same events and outputs of secret on free channels). We obtain T4
from TV by applying -# to every event; erasing the message number and the history from
every input and output on dc and ds; inserting an input in env(n) after every input on dc and
ds; and adding outputs []}"_,lout env(succ’(zero)) at top-level, where n = max{i | (z,i) €
Y'}. Thus, we define 74 and E[] as follows:

C:4 = new x:string;out dc(sc,x)
Sly“éc(Y) = in cache(y°®);(out cache([y @ y°]) |if not (y in y°) then out ds(sc,y))]
Cﬁwc = lin dc(sc,x);in env(n); LC#[out dc(sc,x)]
S .. = linds(sc,y);LS#out ds(sc,y)]
TA = [T, tout env(succ’(zero)) |
private channel dc(item,item).
private channel ds(item,item).
private channel cache(items).
E# [Cﬁwc |Sﬁwc
Cﬁ,[ C. Nscex |S#,[ Sy“,ic l(y,sc)ey” |out cache(Y°) |
[L(znyex CFlout de(sca) ] |
Iy ey S# [ out ds(sc,y)]]
EAL] = [I-,tout env(succi(zero)) | EN#[]

We show that, with these definitions, if BV [SN] —* P = TN, then EA[SA] —* T4,
The processes 7V and T differ only in the content of their events (but this content does not
affect reductions) and on the messages communicated on dc and ds. Each communication
step on dc is simulated by a matching communication step on dc immediately followed by a
communication step on env to input a matching integer. Similarly, each communication step
on ds is simulated by a matching communication step on ds and a communication step on
env. Any other reduction step in ™ immediately carries over to 74, with matching effects.

O

The following lemmas state properties verified by TulaFale and ProVerif: some structural
properties for S, and the main correspondence for S*. They are established by running
TulaFale on scripts ssws—-secrm.tf and ssws-secrm—-a.tf, respectively.

Lemma A.2.3. For any evaluation context E with no events, if £ [SN | =* P, then:

1. If P records event end C4n (sc,sessionld,[Resp Req @ H],n), then P also records event
begin C3n (sc,sessionld,[Req @ H],n).

2. If P records event begin C4n (sc,sessionld,[Resp Req @ H],n), then P also records
event end C3n(sc,sessionld,[Req @ H],n).

3. If P records event begin C3n(sc,sessionld,[Req @ H],succ(n)), then P also records
event end C4n (sc,sessionld,H,n).
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4. If P records event end C3n(sc,sessionld,[Req @ H],succ(n)), then P also records event
begin C4n(sc,sessionld,H,n).

Lemma A.2.4 (Agreement and Secrecy in S*). For any evaluation context E with no events
and where the name secret does not occur, if E [SA} —* P, then:

1. If P records event end C3a(sc,sessionld,[Req],n), then P also records either event
begin C3a(sc,sessionld,[Req],n) or event Leak(sc).

2. If P records end C4a (sc,sessionld,[Resp Req],n), then P also records either begin C4a
(sc,sessionld,[Resp Req],n) or Leak(sc).

3. If P outputs secret on a free channel, then P records event begin Leak(sc) and either
event begin C3a(sc,sessionld,[Req],n) or event begin C4a(sc,sessionld,[Resp Req],n)
where secret is the body of Req or Resp respectively.

We are now ready to prove the main result.

Proof of Theorem 5.4.2: Property (3) of the theorem follows from Lemma A.2.2(3) and
Lemma A.2.4(3). For Properties (1) and (2), we first show that z, n and y, n uniquely index
each kind of events begin C3n, end C3n, begin C4n, and end C4n recorded in SNV , with n
always representing an integer; this follows from the construction of X and Y and the linear
communications on channels dc and ds, described in Lemma A.2.1(2,3), that ensure that each
event records sessionld and n at most once.

Let F be any evaluation context, with E[SV] —* P. We define the property (P;)i>o as
follows:

® Py, 41: if P records event end C3n(sc,sessionld,H,n), then P also records either event
begin C3n(sc,sessionld,H,n) or event begin Leak(sc).

® Py, 190 if P records event end C4n(sc,sessionld,H,n), then P also records either event
begin C4n(sc,sessionld,H,n) or event begin Leak(sc).

and establish this property by induction on i. For the base case Py, the process P records
event end C3n(sc,sessionld,[Req],0). Applying Lemmas A.2.2(1), A.2.4(1), and A.2.2(2),
we obtain that P also records either event begin C3n(sc,sessionld,[Req],0) or event Leak(sc),
establishing the claim.

Suppose now that P,,, holds for m > 0, and consider P,,,;;. We distinguish two cases,
with a similar argument—the second case is illustrated on Figure A.1. We use a structural
correspondence on S towards the previous begin to match the old parts of the event, a cor-
respondence on S towards the latest begin to match the new parts, the inductive hypothesis
to go from the previous end to the previous begin, and finally uniqueness of events at a given
index.

e Case m + 1 = 2n + 1: P records end C3n(sc,sessionld,[Req @ H],succ(n)). By
Lemma A.2.2(1), Lemma A.2.4(1), and Lemma A.2.2(2), then either begin C3n(sc,
sessionld, [Req @ H’], succ(n)) (for some H’) or Leak(sc) is also recorded in P. If
event Leak(sc) is recorded then we are done, so consider the case in which event
begin C3n(sc,sessionld,[Req @ H’],succ(n)) is recorded. By Lemma A.2.3(3), we
know that end C4n(sessionld, H’,n) is also recorded. By inductive hypothesis, we
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SV records end C4n(sc,sessionld,[Resp Req @ Hl,n) —— —— — — — 9

l Lemma A.2.2.1 Theorem 5.4.2.2
(when H=H")
SA records end C4a(sc,sessionld,[Resp Req],n)
I
: Lemma A.2.4.2

\
SA records begin C4a(sc,sessionld,[Resp Req],n)

Lemma A.2.2.2

Y

SN records begin C4n(sc,sessionld,[Resp Req @ H’],n)
I

: Lemma A.2.3.2

\
SV records end C3n(sc,sessionld,[Req @ H’],n)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Lemma A.2.3.1 :
I
I
I
I
I

l Inductive hypothesis

\
SN records SN records
begin C3n(sc,sessionld,[Req @ H’],n) <— begin C3n(sc,sessionld,[Req @ H],n)
Lemma A.2.1

Figure A.1: Outline for the proof of Theorem 5.4.2(2) (bold arrow), using properties
proved manually (solid arrows) and automatically (dashed arrows)

obtain begin C4n(sc,sessionld,H’,n). We can then apply Lemma A.2.3(4) to event
end C3n(sc,sessionld, [Req @ H],succ(n)) to obtain that event begin C4n(sc,sessionld,
H,n) is also recorded in P. Since events are indexed by sessionld and n, we obtain that
H = H’, establishing the claim.

e Case m + 1 = 2n + 2: the process P records end C4n(sc,sessionld,[Resp Req @
H],n). By Lemma A.2.2(1), Lemma A.2.4(2), and Lemma A.2.2(2), either event begin
C4n(sc,sessionld, [Resp Req @ H’],n), for some H’ or event Leak(sc) is recorded in
P. Consider the former case. By Lemma A.2.3(2), the event end C3n(sc,sessionld,
[Req @ H’],n) is also recorded. By inductive hypothesis, we obtain that the event
begin C3n(sc,sessionld,[Req @ H’],n). Applying Lemma A.2.3(1) to the recorded
event end C4n(sc,sessionld,[Resp Req @ H],n), we obtain that the event begin C3n(sc
,sessionld,[Req@ H],n) is also recorded in P. Since events are indexed by sessionld
and n, we obtain that H = H’, hence the property—this case is illustrated as Figure A.1.

O

A.3 From Chapter 6

Theorem 6.6.1. Let P, ) € Pat, such that atoms(Q) € Bg(P). Then [P] ~ [boxg(P)].

Proof. Assume the contrary, i.e. there is an algorithm .A that can distinguish the families
of probability distributions [P] and [boxg(P)]. Fig. A.2 shows an algorithm (first call INI-
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TIALIZE and then CONVERT) sampling either [P] or [boxg(P)], depending on the values of
the oracles f and g. If f and g are £(1",k,-) and £(1", k', ), then the algorithm in Fig. A.2
samples [P]. If f and g are both £(1™, k, 0) then this algorithm samples [boxg(P)]. Com-
posing this algorithm with algorithm .4 allows us to break the type-0 security of the encryp-
tion system.

We have to show that the algorithm CONVERT/():9() can complete its job, i.e. it does
not have to access 7 at a point where it is undefined. If a key K occurs in P but does not
belong to By (P) then this key only occurs as a subexpression of (), where () is used as an
encryption key in P. But CONVERT/():9() (17 @, Q) is never needed in this context, the
oracle f is used instead of encrypting with it. Therefore we do not need the value of K
there. Similarly, if r € Rnd occurs in P but not in Bg(P) then we would need it only for
computing the interpretation of the encryption key (), which is not necessary to compute at
all. If r belongs to the set subtracted from B (P) in the algorithm INITIALIZE, then 7(r) is
not used, but the oracles f or g generate some random numbers of their own.

We have to argue that the algorithm in Figure A.2 indeed samples the claimed families
of distributions. Clearly, if f and g are both £(1", k, 0), then CONVERT/()-90) (1" P, Q)
samples [boxg(P)]. If fis £(1™,k,-) and g is £(1™, k', -) then we have to show that the
key k used by f is indistinguishable from R(1/™ CONVERT(1",Q,Q)) even when we
are given the values of 7 on Bg(P). The key used by f is independent of all the given
values of 7. Also, these values of 7 do not uniquely determine CONVERT/9(1", Q, Q) yet,
because atoms(Q) € Bg(P). Even more, with given values of 7 we can guess the value of
CONVERT/9 (1", Q, Q) only with negligible success probability. Therefore the application
of the random oracle to this value gives us a random bit-string that is independent of the
given values of 7. The key used by f and the bit-string R(1(™), CONVERT(1", Q, Q)) are
identically distributed, therefore they are indistinguishable under given conditions. Hence
we conclude that CONVERT/ ():90) (17 P, Q) samples [P]. a
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algorithm INITIALIZE(1", P, Q)
forall K € Bg(P) do 7(K) «— G(1™)
for all r in the set
Bo(P)\({r' € Rnd | " occurs in P} U {r' € Rnd | {}5 occurs in P})

do7(r) & {0,1)}*

algorithm CoNVERT/():90) (17 P, Q)
if CONVERT/():9() (1 P, ) has been invoked before
return the value returned previously
if Pis K € Keys
return (7(K), “key”)
elseif Pisb € Bool
return (b, “bit”)
else if Pis (P1, P)
let 2 = CONVERT/ Y (1", P1, Q)
let y = CONVERT (17, Py, Q)
return (x, y, “pair’)
else if Pis {P2}p,
ifP =0Q
let y = CONVERT!Y (17, P, Q)
let 2 — f(y)
else
let z = CONVERT (1", P;, Q)
let y = CONVERTY(1", P,, Q)
let z = £ (1™ R(1Y™) z),v)
return (z, “ciphertext”)
else: PisO"
let z — ¢(0)
return (z, “ciphertext”)

Figure A.2: Algorithm sampling either [P] or [boxg(P)]






Samenvatting

Communicatie over een gedeeld medium, zoals bijvoorbeeld het Internet, is inherent on-
veilig: ledereen heeft toegang tot berichten, kan de routing beinvloeden en kan het commu-
nicatie verkeer potentieel afluisteren of zelfs veranderen. Beveiligings protocollen zijn gedis-
tribueerde programmas die specifiek ontworpen zijn om veilige communicatie over zulk een
gedeeld medium mogelijk te maken, waarbij uitgewisselde berichten typisch gebouwd zijn
met cryptografische operaties (zoals bericht versleuteling).

Omdat het correct ontwerpen van beveiligings protocollen moeilijk is, is de analyse
van deze protocollen essentieel. Een buitengewoon succesvol model voor de analyse van
beveiligings protocollen is het zogenaamde Dolev Yao model, waarin wordt aangenomen dat
de aanvaller complete controle heeft over het netwerk. Het aanvallers model gaat uit van
‘perfecte cryptografie’ i.e. van alle cryptografische operaties wordt aangenomen dat ze on-
breekbaar zijn. Het Dolev Yao model is aantrekkelijk omdat het eenvoudig geformaliseerd
kan worden met op formele methoden gebaseerde talen en gereedschappen. Bovendien heeft
het model het juiste abstractie niveau aangezien veel aanvallen onafhankelijk zijn van de
details van de cryptografische operaties omdat ze alleen gebaseerd zijn op combinaties van
uitgewisselde berichten en de kennis die de aanvaller verzameld tijdens de executie van het
protocol.

In dit proefschrift worden vijf significante en ortogonale uitbreidingen van het Dolev Yao
model beschreven. Elk van deze uitbreidingen geeft een realistischere benadering van een
aspect van de werkelijkheid, en geeft hierdoor een sterkere veiligheids garantie. De uitbrei-
dingen zijn:

1. We stellen een efficiénte beslissings procedure voor gebaseerd op “constraint solving”
welke een verbetering op eerder werk door Millen en Shmatikov geeft. We intro-
duceren vervolgens met een rijke taal voor beveiligings eigenschappen gebaseerd op
lineaire temporele logica en presenteren een procedure voor het checken van gokaan-
vallen (“guessing attacks™). We gebruiken de procedure als een didactisch hulpmiddel
en voor de analyse van voorbeeld studies.

2. We ontwikkelen een model waarin de voortgang van tijd tijdens executie van een pro-
tocol expliciet wordt gemaakt met behulp van geklokte automaten. Dit maakt het mo-
gelijk om tijd afhankelijke punten zoals time-outs en herversturing in beveiligings pro-
tocol implementaties te bestuderen.

3. We gebruiken de Applied Pi Calculus om gok-aanvallen te bestuderen onder de aan-
name van een versterkte Dolev Yao aanvaller die cryptografische relaties binnen afgeluis-
terde berichten kan benutten.

4. We benutten de TulaFale taal om sessie gebaseerde web service beveiligings proto-
collen te bestuderen. We formalizeren en geven een semantiek aan twee industriele
specificaties namelijk WS-Trust en WS-SecureConversation.
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5. We relateren het Dolev Yao model met een realistisch compationeel model. In het
bijzonder breiden we het werk van Abadi en Rogaway uit met encryptie die gebruikt
maakt van samengestelde sleutels in plaats van atomaire sleutels.
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